Учение логики о доказательстве и опровержении | страница 25
3. Способ доказательства (демонстрация)
Мы рассмотрели две составные части доказательства: доказываемый тезис и основания доказательства. Мы видели, что главная задача доказательства — сделать непреложной либо истинность доказываемого, либо ложность опровергаемого. Мы видели также, что истинность доказываемого или ложность опровергаемого тезиса не могут быть обнаружены непосредственно. Чтобы убедиться в истинности доказываемого тезиса, следует указать истинное основание, признав которое истинным, мы с необходимостью должны признать истинным также и доказываемый тезис.
Однако, хотя указание истинных оснований для выяснения истинности доказываемого тезиса необходимо, но одним лишь этим мы ещё не достигаем цели доказательства. Только в немногих случаях указание истинных оснований даёт истинность доказываемого тезиса сразу, в виде непосредственного вывода. Так, если требуется доказать, что некоторые из равных между собой углов — прямые углы, то для доказательства истинности этого утверждения достаточно сослаться, как на основание, на истину о том, что все прямые углы равны между собою. Из этого основания сразу, непосредственно, по законам одной лишь логики (а именно — согласно правилам обращения) получается истинный вывод, что некоторые из равных между собой углов — прямые.
Но в огромном большинстве случаев знания истинных оснований, ведущих к признанию истинности тезиса, недостаточно. Необходимо кроме того показать, какова связь, необходимо ведущая от истинности данных оснований к истинности обусловленного ими тезиса. Связь эта во многих случаях непосредственно не видна и требует выяснения. Так, если ученик знает все определения, все аксиомы и все теоремы, из истинности которых, как из оснований, выводится истинность теоремы Пифагора, это ещё не значит, что ученик знает доказательство теоремы Пифагора. Для знания доказательства требуется, чтобы ученик знал, какова связь между всеми известными ему порознь основаниями теоремы Пифагора,— другими словами, какова последовательность оснований и выводов из оснований, необходимо ведущая к признанию истинности доказываемого в этой теореме положения.
Последовательность, или связь оснований и выводов из оснований, имеющая результатом необходимое признание истинности доказываемого тезиса, называется способом доказательства у или демонстрацией. Демонстрация есть не составная часть доказательства, но третья, наряду с доказываемым тезисом и основаниями, логическая характеристика доказательства.