Климат и деятельность человека | страница 23
Рис. 9. Изменения средней температуры свободной атмосферы в различных широтных зонах Земли.
Точками показаны экспериментальные значения температур
В качестве одного из примеров приведем данные о продолжительности вегетационного периода (дни, когда средняя температура выше 5,5° С) в центральной части Англии. В 1870—1895 гг. средняя за десятилетие продолжительность вегетационного периода составила 255—265, а наименьшая 205—225 сут.; в 1930—1949 гг. соответственно 270—275 и 237—243 сут. В 1950—1959 гг. средняя продолжительность вегетационного периода вновь упала до 265, а минимальная — до 226 сут.
В наиболее холодные десятилетия малого ледникового периода в Англии средний вегетационный сезон был короче почти на месяц по сравнению с 1930—1949 гг. Наложение на эпохи укороченного вегетационного периода крупных климатических аномалий значительно может усугубить последствия и без того неблагоприятных климатических условий, вызываемых сокращением вегетационного периода.
Естественные факторы изменения климата
Выше мы проследили за изменениями климата, которые носили глобальный характер и охватывали как длительные, так и более короткие периоды истории Земли. В основном это было вызвано естественными причинами. Лишь в небольшой мере, особенно в последние десятилетия, отдельные изменения объясняются неосознанной деятельностью человека: вырубка и выжигание лесов на больших пространствах, увеличение пахотных земель, вытаптывание растительности животными в так называемых аридных зонах, что могло способствовать наступлению пустынь, и др. Однако человеческая деятельность подобного рода не способна повлиять на крупные климатические колебания: ледниковые и межледниковые периоды или даже малый климатический оптимум и малый ледниковый период.
Как подчеркивалось, строгой теории, позволяющей с уверенностью объяснить и математически оценить колебания климата в прошлом, не создано. Тем не менее наука в состоянии дать количественную оценку отдельных климатообразующих факторов и качественную интерпретацию их влияния на климат. Для наглядности запишем в самом общем виде уравнение баланса термодинамической энергии. Если обозначить среднюю взвешенную по массе и отнесенную к единице массы температуру столба атмосферы единичного сечения T, а ее изменения ΔT, то
ΔT = (1 - A)S>0 + E>эф + E>турб + E>фаз + E>циркул + D + E>ист.
Здесь А — интегральное альбедо системы Земля—атмосфера, характеризующее отражательную способность как подстилающей поверхности, так и самой атмосферы для приходящей от Солнца радиации. Оно меняется теоретически от 0 до 100% (от 0 до 1). В среднем для всего земного шара интегральное альбедо системы 0,3—0,35. Это означает, что 30—35% приходящей солнечной радиации, в основном коротковолновой, отражается и уходит в мировое пространство. Однако для различных сезонов альбедо системы колеблется в очень широких пределах — от нескольких единиц до 90%. В связи с этим, для того чтобы оценить только роль альбедо, необходимо знать характеристику и состояние биосферы над всем земным шаром, почв, океана, снежного и ледового покрова. Альбедо атмосферы зависит от количества и микроструктуры облачности, весьма изменчивой во времени и пространстве.