Нефть XXI. Мифы и реальность альтернативной энергетики | страница 36
Рис. 39. Рост установленной мощности солнечных и ветровых энергоустановок в мировой энергетике в 2004–2013 гг. (ГВт)
Сейчас можно выделить два основных направления использования солнечного излучения в энергетике:
фотовольтаика (фотоэлектрические преобразователи, фотовольтаические ячейки), т. е. преобразование солнечного излучения непосредственно в электроэнергию на основе фотоэффекта;
гелиотермальная энергетика, использующая солнечное излучение для нагрева рабочего тела, например воды, используемой затем в качестве источника тепла или для генерации пара для привода паровых турбин, как в обычных тепловых электростанциях.
За последние годы солнечная энергетика достигла впечатляющих успехов. Если в конце 60-х годов стоимость фотоэлектрической панели составляла около 100 000 долларов за киловатт пиковой (максимально возможной) мощности, то сегодня ее стоимость ниже 2 000 долл./кВт. Однако при подсоединении панели к энергосети примерно такую же сумму необходимо затратить на дополнительное оборудование – арматуру, конвертеры и соединительные схемы. Стоимость получаемой электроэнергии зависит от интенсивности солнечного света. Например, в Средиземноморье стоимость фотоэлектрической электроэнергии может составлять от 0,35 до 0,45 долл./кВт. В наиболее благоприятных для этого районах при использовании современных технологий и концентрировании солнечных лучей стоимость электроэнергии составляет 0,10—0,15 долл./кВт. Сейчас стоит задача снизить в долгосрочной перспективе затраты в системах с концентрированием солнечного излучения до уровня менее 0,05 долл./кВт.
В 1980-х был создан первый тонкопленочный фотоэлемент на основе недорогого аморфного кремния, что стимулировало резкий рост солнечной энергетики. Кремниевые тонкопленочные элементы стали лидерами, захватив 80 % объема мирового рынка солнечных элементов. Благодаря удешевлению солнечных панелей за 50 лет стоимость выработки электроэнергии на основе фотоэлектрических элементов снизилась более чем в 30 раз. С каждым годом открываются все новые пути уменьшения финансовых расходов в данной области. С 2006 по 2008 год новые энергоэффективные технологии позволили сократить расход кремния на 1 Вт установленной мощности с 10 до 8,7 г/Вт.
Переход к использованию гетеросоединений типа арсенида галлия и алюминия и применение концентраторов солнечной радиации с кратностью концентрации 50—100 позволяет повысить КПД с современных 20 до 35 %. В 1989 г. был создан двухслойный элемент, состоящий из двух полупроводников арсенида и антимонида галлия. В этом элементе в первом прозрачном слое (арсенид галлия) поглощается и преобразуется в электричество видимый свет, а инфракрасная часть спектра, проходящая через этот слой, поглощается и преобразуется в электричество во втором слое (антимониде галлия). В итоге КПД составляет 37 %, что вполне сопоставимо с КПД современных тепловых и атомных электростанций.
 
                        
                     
                        
                     
                        
                     
                        
                     
                        
                    