Практическая мудрость | страница 70
А вот пример посложнее. Вы видите хорошо одетого, по-видимому состоятельного человека, который протягивает деньги человеку, одетому очень бедно. Сцену можно в равной степени истолковать как «человек подает нищему» или как «человек отдает деньги грабителю», но существование категорий «нищего» и «грабителя» позволяет вам разглядеть различия между двумя ее вариантами. Сети сконструированы так, что на одном уровне они четко отразят сходство в восприятии, а на другом среагируют на концептуальное или категорийное различие. Используя ранее принятую нами терминологию, можно сказать, что категории, которыми мы пользуемся для фрейминга, влияют на то, как мы интерпретируем, и даже на то, как воспринимаем результаты работы сети. И что сами эти категории или фреймы могут отражать эту работу на более высоком уровне, отстраиваясь от деталей, полученных визуально при восприятии окружающего мира.
Исследования когнитивных сетей с целью выяснить, таким ли образом интеллект действительно распознает паттерны, по большей части основываются не на экспериментах с реальными людьми в естественных условиях. Чаще исследователи вместо этого создают модели – компьютерные программы, построенные по принципу когнитивных сетей. Исследователи закладывают в такие программы «опыт» (некую сумму вводных данных), которым обладают люди, и смотрят, выдаст ли программа такие же результаты, как человек, помещенный в соответствующие лабораторные условия. Таким образом, компьютерное моделирование используется для повышения репрезентативности результатов исследований поведения людей, решающих те или иные задачи.
Компьютерные модели когнитивных сетей создаются для того, чтобы внутренне согласовать наши сегодняшние знания о мозге и нервной системе. То, что мы называем модулями, элементами сети, в той или иной степени соответствует отдельным нейронам или небольшим группам нейронов. Мы знаем, что нервная система содержит миллионы и миллионы нейронов, каждый из которых соединен с другими бесчисленным количеством связей. И мы знаем, что опыт меняет как прочность, так и архитектуру этих связей (новые формируются, а старые, но бесполезные разрушаются). Наиболее важным, ключевым для нервной деятельности является тот факт, что нейроны «немы». Сами по себе они не несут никакой информации и «умеют» только одно: активироваться, когда внешнее воздействие достигает определенного порога, и дезактивироваться, когда воздействие прекращается. Чем конкретно вызвана активация или отключение – это «не в компетенции» нейронов. Мыслительный процесс состоит не в них самих, но является продуктом организации их взаимосвязей. То же самое можно сказать и о компьютерных моделях сетей: их элементы сами по себе ничего не производят; но их активация и объединение в паттерны способны давать мощный результат.