Симпсоны и их математические секреты | страница 37



.

В ее основе лежит идея о том, что каждый человек в мире отделен от любого другого человека максимум шестью уровнями общих знакомых. Например, я наверняка знаю кого-то, кто знает еще кого-то, кто знает еще кого-то, кто знает еще кого-то, кто знает кого-то, кто знает вас. Это самая общая и наиболее известная версия теории шести рукопожатий, но ее можно применить и к конкретным сообществам, например математическому. Следовательно, теория шести рукопожатий может помочь вычислить того, кто имеет широкие связи в мире математики, а значит, может обладать самым высоким уровнем математической подготовки. Хотя это не идеальный показатель, он позволяет получить довольно интересную информацию.

Математическая версия теории шести рукопожатий – это шесть рукопожатий до Пала Эрдеша, или просто число Эрдеша (по имени математика Пала Эрдеша, 1913–1996). Задача – найти связь между тем или иным математиком и Эрдешем, а затем составить рейтинг математиков, расположив их по уровню связей (от самых сильных до самых слабых) с Эрдешем. Но почему именно Эрдеш считается центром математической вселенной?

Ответ прост: это самый плодовитый математик ХХ столетия. На его счету 1525 научных публикаций, 511 из которых написаны в соавторстве с другими математиками. Столь поразительный результат стал возможен благодаря эксцентричному образу жизни Эрдеша, постоянно переезжающего из одного университетского городка в другой, где он сотрудничал с местными математиками и писал научные работы с каждым из них. На протяжении всей жизни Эрдеш умудрялся уместить все свое имущество в один чемодан, что было очень удобно для математика, кочующего в поисках самых интересных задач и самого плодотворного сотрудничества. Для того чтобы максимизировать свою математическую результативность, Эрдеш подпитывал мозг кофе и амфетаминами и часто повторял фразу, сказанную его коллегой Альфредом Реньи: «Математик – это автомат по переработке кофе в теоремы».

В концепции шести шагов до Пала Эрдеша связи формируются в процессе соавторства, как правило, при написании научных работ по математике. У любого соавтора самого Эрдеша число Эрдеша равно 1. У математиков, которые писали свои работы в соавторстве с соавтором Эрдеша, число Эрдеша равно 2 и т. д. Та или иная цепочка может связать Эрдеша практически со всеми математиками мира, независимо от области их исследований.

Возьмем в качестве примера Грейс Хоппер (1906–1991). Она разработала первый компилятор для языка программирования, способствовала созданию языка программирования COBOL, популяризировала термин «баг» для описания дефекта в программе, после того как в Гарвардском университете нашли мотылька в компьютере Mark II. Хоппер занималась математикой во время работы в промышленных компаниях и службы в Военно-морских силах США. В действительности «удивительную Грейс» повысили в итоге до звания контр-адмирала; а эсминец ВМФ США Hopper был назван в ее честь. В общем, Хоппер придерживалась практичного, технологического, промышленного и военного подхода к математике, который полностью отличался от свойственной Эрдешу пуристской приверженности к числам, и все же у Хоппер число Эрдеша – всего 4. Это объясняется тем, что она публиковала свои работы в соавторстве с Ойстином Оре, под руководством которого защитила докторскую диссертацию. Среди студентов Оре был выдающийся специалист по теории групп Маршалл Холл, соавтор авторитетного британского математика Харольда Давенпорта, который, в свою очередь, публиковал работы в соавторстве с Эрдешем.