Тьюринг. Компьютерное исчисление. Размышления о думающих машинах | страница 9



А = [2+3=5] => [А истинно]

С другой стороны, если кто-то предложит утверждение «2∙3 = 8», мы скажем, что это утверждение ложно:

В = [2∙3=8]=> [В ложно]

Однако существуют утверждения, при установлении истинности или ложности которых мы сталкиваемся с парадоксом: утверждение начинает противоречить самому себе. Например, великий философ Сократ, говоря: «Я знаю, что ничего не знаю», противоречил сам себе, так как если Сократ знает, что «ничего не знает», значит, он «уже что-то знает». Классический пример, переводящий ситуацию из математической области в лингвистическую, называется парадоксом лжеца.

Гедель перенес этот парадокс из языка в математику, в частности в сферу логики, доказав в 1931 году теорему о неполноте, описывающую неполные системы, истинность или ложность утверждений которых мы не можем установить. Невероятно захватывающим представляется вопрос о том, как эти философские рассуждения, па первый взгляд далекие от реального мира, заставили поколебаться основы математики.


ПАРАДОКС ЛЖЕЦА

Представьте, что мы выражаем на математическом языке следующее утверждение G:

G = [это утверждение не истинно].

Если мы установим, что утверждение G истинно, мы подтвердим, что оно ложно. И наоборот, если мы решим, что G ложно, это будет означать, что G истинно. Этот парадокс имеет место в самореферентных системах, к которым принадлежит и фраза в описанном примере, и такой ее вариант, как «Я лгу». В результате мы получаем странную петлю. Независимо от того, как мы будем рассуждать, мы всегда приходим в ту же точку, откуда начали. Другими примерами самореферентности являются рука, рисующая руку, на знаменитой картине Эшера, синтез белков и ДНК клетки или «микрофон, слушающий колонку», представленный в книге Дугласа Хофштадтера «Я странная петля»(I am a strange loop).

«Рисующие руки» (1948), Мауриц Корнелис Эшер.


В тот период некоторые ученые сформулировали следующий вопрос: может ли математическая интуиция быть кодифицирована в свод правил, или (па современном языке) в компьютерную программу? Необходимо было понять, возможно ли создание механического разума, сегодня именуемого компьютером, с помощью которого мы сможем автоматически исследовать или доказать без вмешательства человека истинность или ложность какого-либо математического доказательства или утверждения. Например, для того, что мы сегодня называем искусственнглм интеллектом, не существует системы правил для вычисления или вывода, которая позволила бы определить с помощью программы свойства натуральных чисел. Натуральные числа N = [1, 2, 3, 4, ...], которые мы используем для счета элементов целой величины, например количества яблок, имеют определенные свойства.