Смерть в черной дыре и другие мелкие космические неприятности | страница 6
Давайте все же взглянем на несколько нерешенных задач, которые представляют собой ахиллесову пяту современной астрофизики, поскольку являют подлинные масштабы нынешнего невежества. Насколько мы можем судить, решения этих задач дожидаются открытия совершенно новых отраслей физики.
В том, что Вселенная произошла в результате Большого Взрыва, мы почти не сомневаемся, однако можем лишь предполагать, что лежит за космическим горизонтом, который пролегает в 13,7 миллиардах световых лет от нас. Можно только догадываться, что было до Большого Взрыва и почему он вообще произошел. Некоторые гипотезы из сферы квантовой механики допускают, что наша расширяющаяся Вселенная – результат одной-единственной флуктуации в первичной пене пространства-времени, где другие бесчисленные флуктуации порождают другие бесчисленные Вселенные.
Когда мы строим компьютерные симуляции того, что было вскоре после Большого Взрыва, и заставляем электронный мозг генерировать сотню миллиардов галактик, оказывается трудно согласовать данные наблюдений ранних и поздних этапов развития Вселенной. Нам пока не удается дать непротиворечивое описание формирования и эволюции крупномасштабной структуры Вселенной. Такое чувство, что мы упускаем из виду какие-то важные детали головоломки.
Мы несколько веков пребывали в убеждении, что ньютоновы законы движения и тяготения прекрасно описывают мироздание, и так было до тех пор, пока они не потребовали уточнений – и тогда возникла эйнштейнова теория движения и тяготения, теория относительности. В наши дни относительность царствует безраздельно. Квантовая механика, описание Вселенной атомов и элементарных частиц, также царствует безраздельно. Но все дело в том, что по сути своей теория гравитации Эйнштейна и квантовая механика противоречат друг другу. Они по-разному предсказывают, что происходит там, где они пересекаются. Кому-то придется уступить позиции. Либо в эйнштейновой теории гравитации недостает какой-то детали, которая позволяет ей принять принципы квантовой механики, либо в квантовой механике недостает какой-то детали, которая позволяет ей принять эйнштейнову гравитацию.
Не исключен и третий вариант – нам нужна более крупная всеобъемлющая теория, которая вытеснит обе первые. Более того, именно для этого была изобретена теория струн. Она пытается свести существование любого вещества и энергии и их взаимодействия к существованию вибрирующих струн энергии в более высоких измерениях. Различные вибрации в наших жалких измереньицах пространства и времени проявляются в виде разных частиц и сил. Хотя теория струн уже более 20 лет собирает вокруг себя сторонников, ее утверждения пока что лежат вне досягаемости для экспериментальной проверки, поэтому подтвердить или опровергнуть ее пока невозможно. В мире науки к ней сплошь и рядом относятся крайне скептически, тем не менее многие ученые возлагают на нее большие надежды.