Физика учит новый язык. Лейбниц. Анализ бесконечно малых | страница 6
1710 Опубликовал «Опыты теодицеи о благости Божией, свободе человека и начале зла», где собраны многие разговоры ученого с королевой Пруссии Софией Шарлоттой во дворце Литценбурге (позднее переименованном в Шарлоттенбург).
1714 Написал «Монадологию», излагающую его философские взгляды.
1716 Опубликовал свою главную работу о Китае — «Рассуждение о естественной теологии китайцев». После нескольких приступов подагры умер 14 ноября в Ганновере.
ГЛАВА 1
СОЗДАТЕЛЬ АРИФМЕТИЧЕСКОЙ МАШИНЫ
С давних времен человек пользовался математикой, чтобы считать и вычислять. По мере того как процесс вычисления становился все более сложным, появилась необходимость в том, чтобы упростить его и сделать более эффективным. Так, например, возникли счеты и логарифмические линейки. А в XVII веке появился ряд механических машин, которые улучшали скорость и точность математических операций, — такие как арифмометр Лейбница.
Родители маленьких детей, как правило, склонны «мучить» гостей историями о своих отпрысках, стремясь продемонстрировать их ум, смекалку, воображение и даже гениальность. Со временем такие истории становятся годны только для того, чтобы на любой встрече родственников или друзей заставить покраснеть от стыда бывшего «гениального» ребенка.
Однако, если человек в какой-либо сфере деятельности добился выдающихся результатов, то подобные детские истории становятся частью его общеизвестной биографии: они служат доказательством того, что он был вундеркиндом, и в большинстве случаев так оно и есть. Самым известным примером из мира математики стал немецкий ученый Карл Фридрих Гаусс. В 1787 году, когда ему было только десять лет, он решил сложную задачу, предложенную в классе. Его учитель попросил сложить первые 100 натуральных чисел. Гаусс представил решение на своей доске за несколько секунд.
Его метод был следующим. Гаусс понял, что если написать числа в порядке от 1 до 100, а внизу снова от 100 до 1, то при сложении каждого верхнего и нижнего элемента всегда получается 101:
1 2 3 4 97 98 99 100
100 99 98 97 4 3 2 1
Поскольку есть 100 слагаемых, сумма этих двух рядов чисел равна 10100, а так как у нас два ряда, получается, что сумма первых 100 чисел равна:
(100 • 101)/2 = 5050
Гаусс понял, что первое число (1) и последнее (100) в сумме дают то же значение (101), что и второе и предпоследнее, и можно без проблем продолжить это рассуждение, то есть 1 + + 100 = 2 + 99 = 3 + 98 =...= 50 + 51 = 101. Таким образом, получается 50 пар чисел. Если каждая пара равна 101, то сумма всех пар — 5050.