Новые приключения Электроника | страница 28



Что было делать среди этих величин маленькому, тщедушному, но очень гордому Профессору?

Профессор знал твердо свою задачу: он брался доказать теорему целиком!

Однажды Пьер Ферма получил письмо: «Является ли простым число 100 895 598 169?» Ферма незамедлительно ответил адресату, что данное двенадцатизначное число является произведением двух простых чисел: 898 423 и 112 303.

Итак, Ферма умел считать почти мгновенно — по своему собственному методу.

Профессор по примеру Ферма начал атаковать великую теорему с простых примеров.

Он множил в уме шестизначные числа на семизначные, делил девятнадцатизначные на пятизначные, извлекал кубический корень из восьмизначного, разбивал шестизначное число на пять правильных кубов и пять квадратов, которые в сумме должны составить данное число с точностью до одной миллионной.

От этих трудов перед его глазами возникали синие, желтые, зеленые круги, пробегали, как в счетчике, ряды разнообразных таинственных знаков, плыли туманные полосы, но в конце концов он научился быстро находить правильный ответ.

Даже Электроник, который принес Королькову пачку редких сочинений, скопированных по телефону, удивился его способностям в быстром счете. Профессор от души поблагодарил Электроника. Молодчина! Без такого помощника ни один современный школьник не сможет сравниться с выдающимися мыслителями прошлых веков.

Как и Пьер Ферма, Корольков полюбил работы древнегреческих математиков.

В век Эвклида жил, например, знаменитый Аполлоний Пергский.

О его жизни почти ничего не известно.

Одни называли его Великим Геометром, который оставил нам труд о геометрическом методе точек, другие говорили, что Аполлоний был известен под именем Эпсилон и прославился наблюдениями по астрономии, которые использовал впоследствии Птолемей.

Работы Аполлония Корольков читал с карандашом в руке, подчеркивая термины древнего математика, которые известны теперь любому школьнику: «парабола», «метод», «гипотеза», «эпсилон»…

В эти часы Профессор не был больше Вовкой Корольковым. Он был целиком в семнадцатом веке. Даже бормотал под нос по-французски. Внешне спокойный, но быстро реагирующий на любую неожиданность, Профессор лихорадочно заполнял тетрадь расчетами. Заходя в тупик, начинал решать сначала, но шел уже кратчайшим путем.

И однажды он, применив самостоятельно найденный алгоритм, открыл в себе великую способность узнавать простые множители, какими бы многозначными ни были натуральные числа.