Против богов: Укрощение риска | страница 10



Шли годы, математики превратили теорию вероятностей из забавы игроков в могучий инструмент обработки, интерпретации и использования информации. В условиях, когда остроумные идеи громоздились одна на другую, развитие количественных методов анализа риска, подтолкнувших наступление Нового времени, стало неудержимым.

К 1725 году математики уже соревновались друг с другом в составлении таблиц ожидаемой продолжительности жизни, а британское правительство для пополнения бюджета продавало права на пожизненную ренту. К середине XVIII века в Лондоне уже вовсю велись операции по страхованию мореплавания.

В 1703 году Готфрид фон Лейбниц в письме к швейцарскому математику Якобу Бернулли заметил, что «природа установила шаблоны, имеющие причиной повторяемость событий, но только в большинстве случаев»>[1]. Это замечание подтолкнуло Бернулли к открытию закона больших чисел и разработке методов статистической выборки, получивших широкое применение в столь разных областях, как опросы общественного мнения, дегустация вин, управление складскими запасами и тестирование новых лекарств>{2}. Замечание Лейбница — «но только в большинстве случаев» — оказалось более глубоким, нежели он мог предполагать, потому что указывало на огромную роль риска: не будь риска, все было бы предопределено и в мире, где каждое событие идентично предшествующему, даже изменения были бы невозможны.

В 1730 году Абрахам де Муавр установил форму нормального распределения, известного как колоколообразная кривая, и ввел понятие среднего квадратичного отклонения. Оба эти понятия привели к широкоизвестному закону о среднем и являются важнейшими ингредиентами современной техники исчисления риска. Восемь лет спустя Даниил Бернулли, племянник Якоба и тоже выдающийся математик, впервые описал процесс выбора и принятия решений. И что еще важнее, он высказал мысль, что удовлетворение от любого малого приращения богатства «будет обратно пропорционально количеству уже имеющегося добра». Это внешне простодушное утверждение Бернулли объяснило, почему царь Мидас был несчастлив, почему люди неохотно идут на риск и почему нужно снизить цены, чтобы убедить людей покупать большее количество товара. С тех пор закон Бернулли остается главной парадигмой рационального поведения и стал основой современных принципов управления инвестициями.

Почти через сто лет после сотрудничества Паскаля и Ферма диссидентствующий английский священник по имени Томас Байес осуществил впечатляющий прорыв в статистике, продемонстрировав, как можно повысить качество решений на основе математической обработки сочетания новой и старой информации. Теорема Байеса рассматривает часто встречающуюся ситуацию, когда мы имеем интуитивное суждение о вероятности некоторого события и хотим понять, как это суждение должно измениться после того, как событие произошло.