Объясняя мир. Истоки современной науки | страница 34
Самое великой научное открытие Архимеда в области физики содержится в его книге «О плавающих телах». Архимед доказывал, что если какая-то часть жидкости окажется сдавлена в вертикальном направлении сильнее другой части весом самой жидкости или плавающими или погруженными в нее телами, то жидкость станет течь, пока все ее части не будут сдавлены одинаковым весом. Он формулировал это так:
«Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-нибудь другим»{53}.
Отсюда Архимед заключил, что плавающее тело погружается в жидкость до уровня, на котором его собственный вес уравнивается весом вытесненной им жидкости. (Именно поэтому, говоря о весе судна или корабля, используют термин «водоизмещение».) Кроме того, твердое тело, слишком тяжелое, чтобы плавать, погруженное в жидкость, будучи подвешенным к рычагу весов на веревке, «…будет легче своего истинного веса на величину веса вытесненной жидкости» (см. техническое замечание 9). Отношение истинного веса тела к значению уменьшения его веса в погруженном в воду состоянии называется относительной плотностью тела, то есть отношением веса тела к весу воды того же объема. У каждого материала есть свое характерное значение относительной плотности: для золота оно равняется 19,32, для свинца – 11,34 и т. д. Этот метод, выведенный из систематического изучения статики жидкостей, позволил Архимеду выяснить, была ли царская корона изготовлена из чистого золота или сплава золота с более дешевыми металлами. Не установлено, применял ли сам Архимед свое открытие на практике, но и столетия спустя этот метод оставался надежным способом выяснения состава материалов.
Еще более потрясающих успехов Архимед добился в математике. Используя технику, предвосхитившую интегральный анализ, он смог вычислить площади и объемы различных плоских фигур и пространственных тел. Например, площадь круга равна половине длины соответствующей окружности, помноженной на радиус (см. техническое замечание 10). Используя методы геометрии, он показал, что соотношение, выражаемое числом, которое мы (но не Архимед) называем «пи», то есть отношение длины окружности к ее диаметру, находится между 3 1/7 и 3 10/17. Цицерон свидетельствует, что он видел на могильном камне Архимеда чертеж цилиндра, описанного вокруг сферы, поверхность которой касается боковой поверхности и обоих концов цилиндра, наподобие теннисного мяча, плотно всунутого в жестяную банку. По всей видимости, Архимед больше всего гордился своим доказательством того, что в этом случае объем сферы составляет ровно 2/3 объема цилиндра.