Мир по Эйнштейну. От теории относительности до теории струн | страница 77
Волны вибрации пространственно-временного желе
Другой довольно поучительный пример новых возможностей Игры, возникающих в эйнштейновском мире, связан с тем, что обычно называют «гравитационными волнами». Представляя пространство-время в образе упругого желе, гравитационные волны можно уподобить волнам, распространяющимся внутри желе, когда оно колеблется. Заметим, что кусочек желе можно колебать разными способами: можно либо действовать на волокна материи, находящиеся внутри него, либо создавать периодические напряжения на внешней поверхности желе. Эйнштейн понял по крайней мере в 1916 г., что эти два процесса также возможны в случае пространственно-временного желе: распределение массы-энергии в пространстве-времени может «перемещаться» и, таким образом, возбуждать колебательный процесс в хроногеометрии (к примеру, когда две звезды вращаются вокруг общего центра масс, выписывая двойную спираль в пространстве-времени) или же волны вибрации геометрической структуры пространства-времени могут приходить из бесконечности, распространяясь благодаря упругости пространственно-временного желе и уходя затем назад в бесконечность.
Эйнштейн был первым, кто подверг обе возможности математическому анализу. В 1916-м и затем в 1918 г. он показал, что общая теория относительности в самом деле допускает существование гравитационных волн. Он обнаружил, что скорость распространения этих волн была в точности равна скорости света, т. е. 300 000 км/с. Это много больше скорости распространения упругих волн в обычной твердой среде. Например, скорость волн упругих деформаций в стали равна 5 км/с. Интуитивно ясно, что большая скорость распространения гравитационных волн обусловлена чрезвычайной жесткостью (1 / κ) пространства-времени, или, иными словами, очень маленьким коэффициентом упругости, о котором говорилось выше.
Эйнштейн также рассчитал амплитуду гравитационных волн, испущенных движущимся распределением напряжения-массы-энергии. Он также понял, что эти волны сами по себе являются переносчиками энергии и импульса. Отсюда он вывел, что движущийся сгусток напряжения-массы-энергии испытывает потерю энергию в результате излучения гравитационных волн в бесконечность, и в первом приближении получил выражение для ее величины.