Мир по Эйнштейну. От теории относительности до теории струн | страница 65



, а «напряжение» буквой T, то закон упругости Гука сводится к простому утверждению D = κT, где κ – коэффициент пропорциональности, характеризующий «упругость» рассматриваемой структуры. Чем больше κ, тем более упругой является структура, т. е. тем больше она деформируется под действием заданного напряжения. Можно также сказать, что обратная коэффициенту κ величина 1 / κ измеряет жесткость рассматриваемой структуры. Чем меньше κ, тем больше жесткость (и тем меньше упругость). Этот универсальный закон упругости справедлив только в ограниченном диапазоне прикладываемого напряжения (не сильно отличным от нуля). Обратите внимание, что напряжения и соответствующие деформации могут прикладываться как в одном, так и в другом направлении, т. е. могут быть положительными или отрицательными. Независимо от знака приложенного напряжения, деформация будет возвращаться к нулю, если напряжение постепенно уменьшается до нуля. Это и есть основное свойство упругой структуры – стремление возвращаться в исходное «недеформированное» состояние, когда деформирующая сила перестает действовать.

В то же время если перейти определенный порог (так называемый «предел упругости»), другими словами, если приложить слишком большое напряжение, то в общем случае мы покинем область упругости для данной структуры. И тогда мы переходим в область «пластичности», где структура приобретает постоянную деформацию, остающуюся после того, как напряжение перестает действовать, и затем в область «разрыва», где структура рвется.

Чтобы немного развить интуицию, а также приблизиться к нашей модели «пространственно-временного желе», рассмотрим в качестве упругой структуры трехмерную среду, имеющую место в случае заливной телятины. То, что мы собираемся сказать, в равной степени относится и к более жесткой среде, такой как металл, однако жесткость металла настолько велика, что интуитивно сложно представить его в качестве упругой структуры. Поэтому мы рассматриваем кусок (однородного) желе. Деформируем этот блок, прикладывая давление, или напряжение, к его краям. Это создает напряженное состояние внутри куска. Такое напряженное состояние описывается (в механике сплошных сред) математическим объектом, называемым тензором напряжений. Этот тензор, который мы обозначим через T (от английского слова tension){72}, позволяет вычислять силы внешнего воздействия, действующие на поверхность выделенного элемента объема внутри среды. В газообразной среде