Мир по Эйнштейну. От теории относительности до теории струн | страница 61



Что же такое хроногеометрическая структура «деформированного» пространства-времени (которое обычно называют «искривленным»)? Это структура, в которой «расстояние-время» между двумя событиями по-прежнему дается определенным «квадратом интервала», но в которой, в отличие от случая пространства-времени Минковского, этот квадрат интервала имеет очень сложное математическое выражение для двух далеких событий. Зато, если рассмотреть очень близкие друг к другу события (как в пространстве, так и во времени), квадрат интервала будет определяться достаточно простой математической формулой, хотя и более сложной по сравнению с соответствующей формулой для пространства-времени Минковского. Как понял Эйнштейн в 1912 г., квадрат интервала между двумя событиями в деформированном пространстве-времени весьма напоминает квадрат расстояния между двумя точками искривленной поверхности, вложенной в обычное евклидово пространство.

В качестве примера искривленной поверхности возьмем поверхность Земли. Если рассмотреть небольшой участок земной поверхности, например участок в один квадратный метр, то, в принципе, его можно отождествить с небольшой частью плоскости (достаточно рассмотреть касательную плоскость к точке, расположенной недалеко от центра рассматриваемого участка). Таким образом, квадрат расстояния (т. е. расстояние, возведенное в квадрат) между двумя точками на этой небольшой поверхности будет в очень хорошем приближении равен квадрату расстояния между двумя точками на плоскости, который в свою очередь может быть получен с помощью теоремы Пифагора. Единственная сложность заключается в невозможности покрыть всю поверхность Земли с ее горами и долинами абсолютно регулярной сеткой координат (таких как длина и ширина).

На плоской поверхности, например на лежащем на столе листе бумаги, можно легко определить местоположение точки с помощью обычной прямоугольной сетки, какая используется в школьных тетрадках или на миллиметровой бумаге. Такую регулярную сетку уже невозможно реализовать на поверхности, имеющей всевозможные выпуклости и впадины. Чтобы зафиксировать любую точку на искривленной поверхности, мы, таким образом, используем два параметра, скажем x и y, которые больше не имеют простого смысла длины и ширины. Например, на поверхности Земли в качестве «первой координаты» x можно использовать долготу, а в качестве «второй координаты» y – широту. Следует отметить, что такие координаты можно использовать, даже когда земную поверхность невозможно аппроксимировать сферой: например, на возвышенности или в низине. При этом нет необходимости вводить третью координату (скажем, высоту над уровнем моря), поскольку двух первых координат (долготы и широты) будет достаточно, чтобы определить положение на Земле, а высота будет определяться некоторой функцией долготы и широты. Отсюда легко видеть, что если использовать сетку, определяемую долготой и широтой, на небольшой части поверхности Земли на склоне горы или ущелья, то эта сетка будет представлять собой