Мир по Эйнштейну. От теории относительности до теории струн | страница 40



Понятие интервала между двумя событиями определяет то, что можно назвать «хроногеометрией» (или, если угодно, «хроногеометрией») пространства-времени, т. е. обобщение геометрии обычного пространства в том виде, как она определяется понятием расстояния между двумя точками. Геометрию пространства можно представить себе мысленно, изображая вокруг каждой точки P геометрическое место точек, находящихся на единичном расстоянии от точки P, т. е. сферу. Аналогично, хроногеометрию пространства-времени можно изобразить, представив вокруг каждого события P множество событий, разделенных с P единичным квадратом интервала. Однако, поскольку квадрат интервала между двумя событиями может быть положительным, отрицательным или нулевым, мы видим, что полное представление о хроногеометрии пространства-времени будет складываться из определения для каждой точки P форм, соответствующих трем типам событий: (i) события, разделенные с Р квадратом интервала, равным плюс один; (ii) события, разделенные с Р квадратом интервала, равным минус один; и (iii) события, разделенные с Р нулевым интервалом.

Эти множества событий не представляют собой сферы, как в случае евклидовой геометрии. Читатель найдет представление множеств (i), (ii) и (iii) на рис. 3. Заметим, что множество (iii) представляет собой двойной конус, состоящий из двух конусов, соединенных своими вершинами (один конус направлен «в верх» пространства-времени, т. е. к тому, что традиционно называется будущим, тогда как другой конус направлен «в низ» пространства-времени, т. е. к прошлому). Поскольку этот конус представляет собой события, связанные с событием Р посредством светового луча, он называется «световым конусом». Множество (i) имеет форму песочных часов (иными словами, выглядит как два конуса, соединенные своими вершинами, а затем деформированные таким образом, чтобы образовать горловину, через которую может сыпаться песок). Множество (ii) состоит из двух отдельных поверхностей: одна находится в верхней части светового конуса (направленного в будущее), а другая – в нижней его части (направленной в прошлое).

Рисунок 3, на котором представлена хроногеометрия пространства-времени, по своему виду напоминает то, что можно было бы назвать мировой шахматной доской. «Мир» в смысле Минковского означает пространство-время, тогда как структура «шахматной доски» определяет правила, разрешающие ходы между «клетками шахматной доски», т. е. между разными событиями пространства-времени. Например, световой конус указывает на возможность соединения двух событий посредством обмена световым лучом. Интересно также отметить, что шахматная доска состоит из фигур, напоминающих песочные часы. Временной поток отсутствует в пространстве-времени, однако каждые песочные часы напоминают нам о том, что даже в этом мире, существующем вне времени, структуры имеют вид необратимого потока. Возможно, Гераклит, представлявший себе время ребенком, играющим в шахматы