Мир по Эйнштейну. От теории относительности до теории струн | страница 34



Вспомнив геометрическую структуру обычного пространства, обратимся к структуре пространства-времени. Во-первых, что такое «точка пространства-времени» или «мировая точка», как говорил Минковский? Это «событие», т. е. то, что происходит в определенной точке пространства в определенный момент времени. Например, это может быть столкновение двух частиц или, если взять пример из повседневной жизни, обычная мимолетная встреча двух людей. Чтобы определить событие, требуется, как и для встречи, указать местоположение в пространстве, «где оно происходит», и момент времени, «когда оно происходит». Поэтому нужно задать четыре числа: три числа (длина, ширина и высота) для определения пространственного положения события и четвертое (дата) для идентификации положения во времени. Необходимость задания четырех независимых чисел для идентификации каждой точки пространства-времени означает на математическом языке, что пространство-время представляет четырехмерный континуум. Четыре независимых числа, позволяющих идентифицировать точки в четырехмерном континууме, называются на математическом языке четырьмя «координатами» данной точки. Поэтому можно считать, что длина, ширина, высота и дата определяют четыре координаты в пространстве-времени.



Поскольку трудно представить себе такой четырехмерный континуум, рассмотрим более простой случай пространства-времени, имеющий лишь три измерения: два пространственных и одно временное. Такое трехмерное пространство-время связано с «миром» мелких насекомых, живущих на плоской поверхности: например, это может быть поверхность пола в здании. Чтобы определить каждое событие пространства-времени этих насекомых, мы должны задать три числа или, другими словами, три координаты: длину и ширину, задающие пространственное положение события на полу, и дату, задающую временное положение. Тогда можно представить себе это пространство-время, идентифицируя его с обычным трехмерным пространством: достаточно определить первые две координаты, продольную и поперечную, пространства-времени с продольной и поперечной координатами насекомых в обычном трехмерном пространстве, а третью координату пространства-времени – дату – отождествить с вертикальной координатой в обычном пространстве. Заметим походя, что таким образом мы воспроизводим образ, созданный Прустом в процитированном выше заключительном предложении романа «Обретенное время», в котором Время осознается как вертикальное измерение, символизированное ходулями, и добавляется к обычным пространственным измерениям