Искусственный интеллект | страница 61



Теоретически мы в состоянии представить интерфейс, на который было бы можно переложить когнитивную работу по артикуляции и интерпретации мыслей. Он будет должен уметь каким-то образом считывать состояния нейронов в мозге-передатчике и переводить их в понятные модели активации нейронов в мозге-приемнике. Даже если оставить в стороне (очевидные) технические трудности организации надежного одновременного считывания состояния миллиардов отдельных нейронов и записи в них, создание такого интерфейса, вероятно, само по себе является AI-полной задачей искусственного интеллекта. Интерфейс должен включать компонент, способный (в режиме реального времени) ставить в соответствие возникающим в одном мозгу моделям семантически эквивалентные модели в другом мозгу. Для выполнения этой задачи потребуется подробное многоуровневое понимание механизма нейронных вычислений, которое может привести непосредственно к созданию нейроморфного ИИ.

Несмотря на эти оговорки, движение в сторону улучшения интеллектуальных способностей по пути создания киберорганизмов не кажется совершенно бесперспективным. Впечатляющие результаты работ с гиппокампом крыс показали возможность создания нейронного протеза, который может повысить эффективность выполнения простой задачи на запоминание75. На сегодняшний день имплантат считывает информацию с электродов в количестве от одного десятка до двух десятков, размещенных в области CA3 гиппокампа, и передает ее на такое же количество нейронов, расположенных в области CA1 гиппокампа. Микропроцессор способен различать две модели возбуждения в первой области (соответствующие двум видам информации — «правый рычаг» и «левый рычаг») и научиться тому, как эти модели передаются во вторую­ область. Такие протезы могут не только восстановить функционирование мозга в ситуации, когда нормальное нейронное взаимодействие между двумя областями нейронов нарушено, но и за счет направленной активации требуемой модели во второй области способны повысить эффективность выполнения задачи по сравнению с обычным для крыс уровнем. Хотя по современным стандартам это и весьма впечатляющее в техническом плане достижение, эксперимент оставляет без ответа множество вопросов. Насколько хорошо этот подход масштабируется? Ведь число комбинаций взаимодействующих областей мозга, а также нейронов на входе и выходе из них, очень велико, поэтому сможем ли мы избежать комбинаторного взрыва при попытке картировать взаимодействия в мозгу? Не получится ли, что хотя эффективность решения тестовой задачи растет, этому сопутствуют некие скрытые издержки, например снижение способности обобщать стимулы или неспособность забыть определенную ассоциацию, после того как среда изменилась? Получит ли человек — располагающий, в отличие от крыс, внешними носителями памяти вроде бумаги и ручки — какую-либо выгоду от появления таких возможностей? Насколько легко будет применить подобный метод к другим областям мозга? В то время как работе описанного протеза помогает сравнительно простая структура областей гиппокампа, обеспечивающая последовательную передачу сигнала в одну сторону (по сути, однонаправленная связь между зонами СА3 и СА1), другие структуры в коре головного мозга используют рекуррентные циклы обратной связи, что значительно повышает сложность схемы связей и, видимо, затруднит расшифровку набора функций встроенных в нее групп нейронов.