Искусственный интеллект | страница 37



Однако для эволюционных алгоритмов требуется не только разнообразие вариантов, но и оценка приспособленности каждого из вариантов — обычно наиболее затратный компонент с точки зрения вычислительных ресурсов. В случае эволюции искусственного интеллекта для оценки приспособленности требуется, по всей видимости, моделирование нейронного развития, а также способности к обучению и познанию. Поэтому лучше не смотреть на общее число организмов со сложной нервной системой, а оценить количество нейронов в биологических организмах, которые нам, возможно, придется моделировать для расчета целевой функции эволюции. Грубую оценку можно сделать, обратившись к насекомым, которые доминируют в наземной биомассе (на долю одних только муравьев приходится 15–20%)10. Объем головного мозга насекомых зависит от многих факторов. Чем насекомое крупнее и социальнее (то есть ведет общественный образ жизни), тем больше его мозг; например, у пчелы чуть меньше 10>6 нейронов, у дрозофилы — 10>5 нейронов, муравей со своими 250 тысячами нейронов находится между ними11. Мозг большинства более мелких насекомых содержит всего несколько тысяч нейронов. Предлагаю с предельной осторожностью остановиться на усредненном значении (10>5) и приравнять к дрозофилам всех насекомых (которых всего в мире — 10>19), тогда суммарное число их нейронов составит 10>24. Добавим еще порядок величины за счет ракообразных, птиц, рептилий, млекопитающих и т. д. — и получим 10>25. (Сравним это с тем, что до возникновения сельского хозяйства на планете было меньше 10>7 человек, причем на каждого приходилось примерно 10>11 нейронов — то есть в общей сложности сумма всех нейронов составляла­ меньше чем 10>18, хотя человеческий мозг содержал — и содержит — намного больше синапсов.)

Вычислительные затраты на моделирование одного нейрона зависят от необходимой степени детализации модели. Для крайне простой модели нейрона, работающей в режиме реального времени, требуется примерно 1000 операций с плавающей запятой в секунду (далее — FLOPS). Для электро- и физиологически реалистичной модели Ходжкина–Хаксли нужно 1 200 000 FLOPS. Более сложная мультикомпонентная модель нейрона добавила бы два-три порядка величины, а модель более высокого уровня, оперирующая системами нейронов, требует на два-три порядка меньше операций на один нейрон, чем простые модели12. Если нам нужно смоделировать 10>25 нейронов на протяжении миллиарда лет эволюции (это больше, чем срок существования нервных систем в их нынешнем виде) и мы позволим компьютерам работать над этой задачей в течение года, то требования к их вычислительной мощности попадут в диапазон 10