Вселенная. Руководство по эксплуатации | страница 17
Беда в том, что все эти скорости крайне близки к скорости света, но все же не дотягивают до нее. Каждое крошечное дополнительное ускорение требует все больше и больше энергии, а для того чтобы в самом деле разогнаться до с, потребуется бесконечное количество энергии. Не очень большое, просим отметить, а именно бесконечное.
Быть может, вам этого мало. Если вам удастся как-то разогнаться до скорости света (невзирая на то, что это невозможно), свет от вашего лица так и не дойдет до зеркала, а значит, вы, как заправский вампир, не увидите собственного отражения. Мало того! Сам факт, что вы не увидите своего отражения, и докажет, что вы достигли скорости света. Но поскольку вы уже точно знаете, что никто не может сказать, стоит он или движется, это лишнее доказательство, что разогнаться до скорости света невозможно.
V. А разве относительность не придает атомам бесконечную энергию?
Все эти разговоры о часах и эталонах метра и скорости света, возможно, интересны и сами по себе, но, наверное, когда (и если) вы задумываетесь об относительности, в голову вам первым делам приходят некоторые другие вопросы. Почти наверняка вы думаете при этом о самой знаменитой физической формуле (и единственной, которую вы встретите в этой книге в явном виде):
Е = mc>2
Выглядит она крайне просто, к тому же вы уже познакомились с одной из ее составляющих — это с, скорость света.
Буква Е в левой части обозначает энергию, и мы совсем скоро поговорим о том, при чем тут энергия, но сначала обсудим другую составляющую — m, то есть массу.
Вероятно, вам кажется, что масса — это мера «величины» предмета, но для физика масса всего-навсего отражает то, насколько трудно заставить предмет двигаться и насколько трудно остановить его, если он уже движется. Гораздо проще остановить Рыжего, если он бежит на вас со скоростью 15 километров в час, чем его поезд, если он едет с той же скоростью.
Но мы уже заметили одну интересную вещь, касающуюся эффективной массы — в данном случае эффективной массы консервных банок с фасолью. Мы обнаружили, что чем выше скорость банки, тем больше работы требуется, чтобы разогнать ее хоть чуточку быстрее. Иначе говоря, банка с фасолью ведет себя так, словно становится все более и более массивной (то есть ее все труднее и труднее двигать). А как мы уже отметили, если скорость банки приближается произвольно близко к скорости света, впоследствии потребуется бесконечное количество работы, чтобы придать банке хоть какое-то ускорение.