Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства | страница 101



Пойти дальше средних величин к значениям графиков и их уклонов в каждой отдельной точке – вот откровение Ньютонова анализа. Он взялся разбираться с тем, с чем никто до него не возился: как определить мгновенную скорость тела, ее скорость в каждый миг? Как разделить расстояние, пройденное телом, на затраченное время, если речь идет о временном промежутке размером с точку? Мыслимо ли это вообще? Эту задачу Ньютон и взялся решать в «Черновой книге».

Галилей воображал себе «предельные случаи» – например, плоскость, чей угол наклона все увеличивают и увеличивают, пока он не достигнет прямого, Ньютон же довел этот подход до предела возможности. Чтобы определить мгновенную скорость в данный момент времени, он представил, как будет рассчитывать среднюю скорость традиционно, то есть за некоторый промежуток времени, включая и то мгновение, которое его интересует. Затем он представил себе нечто новое и абстрактное: сужение этого промежутка, еще и еще, пока, в предельном случае, его протяженность не приблизится к нулю.

Иными словами, Ньютон представил, что временной промежуток можно взять столь малым, что он будет меньше любого конечного числа – но все-таки больше нуля. Ныне длина такого промежутка называется «стремящейся к нулю» или «бесконечно малой». Если рассчитать среднюю скорость в определенный промежуток времени, а затем уменьшить этот промежуток до бесконечно малого, получится скорость тела в определенный миг, или мгновенная скорость.

Математические правила нахождения мгновенной скорости в данный момент времени – или, в общем случае, наклона линии в данной точке – и есть основа математического анализа[195]. Если атомы – неделимые составляющие химических веществ, то бесконечно малые величины – своего рода неделимые составляющие пространства и времени.

Вместе с математическим анализом Ньютон изобрел математику изменения. В особенности применительно к движению изощренное понимание мгновенной скорости он предложил культуре, где лишь недавно придумали способ измерять скорость: бросать прикрепленную к лагу веревку, на которой завязаны узлы, за корму и считать, сколько узлов ушло за борт за единицу времени. Впервые появился смысл в понятии скорости тела – или же в изменении чего угодно – в заданный момент времени.

Ныне математический анализ применяется для описания каких угодно изменений – обтекание крыльев самолета воздухом, рост населения, перемены в климатических системах, подъемы и падения биржевых показателей, ход химических реакций. В любом деле, где можно графически отразить количество, в любой области науки, математический анализ – ключевой инструмент