Том 26. Мечта об идеальной карте. Картография и математика | страница 42
Ламберт был исключительным математиком: он доказал иррациональность числа π и предположил, что числа е и π трансцендентны, то есть их нельзя представить как корни многочлена с целыми коэффициентами. Он одним из первых изучил проблему, связанную с пятым постулатом Евклида. Ламберт предположил, что пятый постулат ложен, и получил результаты, относящиеся к неевклидовой геометрии. Он занимался гиперболическими функциями, проводил важные исследования в сферической геометрии, картографии и науке о перспективе, а также совершил важные открытия в теории вероятностей. Интересы Ламберта не ограничивались исключительно математикой: он также был автором важных работ по физике, астрономии и философии.
* * *
Если мы примем радиус земной сферы равным единице и будем считать, что цилиндр касается ее в точках, лежащих на экваторе, то ось цилиндра будет проходить через Северный и Южный полюса. После построения проекции сферы на поверхность цилиндра он разрезается по меридиану и разворачивается на плоскости. Эта развертка цилиндра на плоскости является изометрической и сохраняет все интересующие нас метрические свойства. Первую карту мира в этой проекции составил Иоганн Генрих Ламберт в 1772 году.
Карта, выполненная в равновеликой цилиндрической проекции Ламберта (1772).
Далее перечислены некоторые свойства карты, выполненной в равновеликой цилиндрической проекции Ламберта.
1. Она имеет прямоугольную форму, как и все карты, выполненные в цилиндрических проекциях.
2. Меридианы и параллели отображаются как прямые, они имеют равную длину (но не равны между собой) и перпендикулярны друг другу.
3. Меридианы распределены равномерно вследствие того, что масштаб во всех точках каждой параллели постоянен, однако масштабы на разных параллелях отличаются. Параллели распределены неравномерно и сближаются друг с другом по мере приближения к полюсам.
4. Так как проекция является равновеликой, она сохраняет площади (с учетом коэффициента масштаба поверхности). Этот коэффициент возникает при уменьшении размеров земной сферы (то есть при гомотетии) и постоянен во всех точках карты. Однако величины углов и геодезические линии не сохраняются.