Том 38. Измерение мира. Календари, меры длины и математика | страница 8
В физическом мире измерения производятся путем сравнения с эталоном, выбранным в качестве единицы измерения. Для этого используются единицы, кратные или дробные эталону; результат сравнения представляет собой рациональное число. Попробуем измерить длину одной из сторон стола карандашом. Карандаш будет эталоном, а стол — объектом измерения. Скольким карандашам равна длина стола? Во время работы над книгой мы сами провели этот эксперимент. Длина стола оказалась больше 7 карандашей, но меньше 8, то есть равной некоторому числу между 7 и 8. Чтобы выразить результат измерения, нам понадобятся дроби. Для этого нужно измерить расстояние от точки, где заканчивается седьмой карандаш, до края стола. Какой части карандаша будет равно это расстояние? Половине, трети, четверти? Подобные эмпирические рассуждения и оценку на глаз проводили древние египтяне, которые использовали только дроби с числителем, равным 1 (и, в качестве исключения, дробь 2/3). Если при измерении стола на глаз мы определили, что восьмой карандаш выступает за край, к примеру, на одну четверть, то длина стола будет равной 7 и 3/4. Если же мы хотим получить более точный результат, то можем обратиться к теории пропорций, созданной древними греками, перенести меру на бумагу и применить теорему Фалеса. Допустим, что длина стола в этом случае равна 7 и 2/3.
Результаты измерений в повседневной жизни выражаются в виде дробей или десятичных дробей с конечным числом знаков в зависимости от использованного метода и измерительного инструмента. В обоих случаях результатом измерений будет рациональное число. В примере с нашим столом результат измерений, выраженный в виде дроби, равен 7 и 2/3, в качестве единицы измерения использовался карандаш. При измерении стола с помощью рулетки мы получим результат в 1,40 м — конечную десятичную дробь. В реальной жизни измерение представляет собой приближение и зависит от измеряемого предмета, вида измерительного инструмента и точности измерений.
* * *
ВЕЩЕСТВЕННЫЕ ЧИСЛА
Вещественные числа (обозначаются
Примеры вещественных чисел (
Начиная от натуральных чисел (