Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики | страница 80
Собственно, этим и объясняется общая тревога в научном сообществе: мы нарушили атмосферу так сильно, что развитие этой системы стало непредсказуемым. Мы не знаем ни когда вернемся в состояние стабильности, ни к какому состоянию стабильности придем. А поскольку большая часть мировой экономики построена вокруг известных климатических моделей, внезапная их смена катастрофична. Например, огромный вред может быть нанесен сельскому хозяйству, поскольку ему нужны стабильные климатические модели, и изменение в цикле времен года может вызвать голод на планете.
Как было видно, ячейки Бенара ведут себя почти волшебным образом: порядок появляется из хаоса без какого-либо вмешательства со стороны человека. Существует множество систем с подобными свойствами — в физике, химии и даже экономике.
В этом разделе мы коротко остановимся на математических системах, обладающих свойством самоорганизации, а затем применим полученные знания к другим ситуациям, таким как лазеры или экосистемы.
Появление самоорганизующихся систем в таких структурах, как газы, заставляет задать важный вопрос: может ли достаточно сложное поведение опираться на небольшой перечень простых правил? Для изучения этого явления применялись клеточные автоматы.
Клеточный автомат — это решетка с одним, двумя или большим количеством измерений, в которой каждая клетка считается ячейкой. Ячейки могут быть окрашены в два и более цвета, но используются белый и черный. Изменение каждой ячейки происходит согласно простому алгоритму и зависит от состояния соседних ячеек.
Простой пример клеточного автомата — это игра «Жизнь», созданная английским математиком Джоном Хортоном Конвеем (1937). В ней берется двумерная бесконечная решетка. Каждая ячейка на этой поверхности может быть «живой» (черной) или «мертвой» (белой). Начинается игра с произвольной конфигурации клеток.
Начальное состояние игры «Жизнь». Конкретно для этого состояния характерно поведение, напоминающее периодически стреляющий пистолет.
Затем система начинает развиваться на основании одного и того же правила. Правила просты.
1. Если с живой клеткой граничат меньше двух живых клеток, она умирает.
2. Живая клетка, с которой граничат две или три живые клетки, выживает.
3. Живая клетка, граничащая с более чем тремя живыми клетками, умирает.
4. Мертвая клетка, граничащая с тремя живыми клетками, оживает.
Если взять приведенное начальное состояние, мы увидим следующее развитие.