Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики | страница 53
Вспомним, что число микросостояний, совместимых с макросостоянием, задано различными комбинациями энергии, которую могут иметь молекулы. Как только мы получили это значение, можно задать вопрос, каково распределение энергии, которая дает наибольшую вероятность, то есть какое из макросостояний наиболее вероятно. В конце концов мы обнаружим, что скорости частиц должны быть распределены определенным образом, как было показано ранее.
Исходя из распределения скоростей, можно сделать вывод, что число частиц с определенным уровнем энергии при увеличении энергии уменьшается. Значит, можно создать математический объект, который бы кодифицировал все возможности получения каждого значения энергии. Этот объект называется статистической суммой и выражается также с помощью экспоненциальной функции. Если энергия частицы i равна Е>i, то статистическая сумма Z равна:
Каждый член статистической суммы пропорционален вероятности найти частицу с такой энергией, таким образом, статистическая сумма кодифицирует всю информацию о нашей системе. Благодаря этому мы можем использовать ее для интересующих нас расчетов: например, общей энергии или вероятности нахождения газа в состоянии, отличном от наиболее вероятного.
Важное свойство статистической суммы заключается в том, что ее состояние не зависит от прошлого. Газ не помнит того, что случилось две секунды назад, и его изменение абсолютно не зависит от этого — это известно как Марковское свойство, и им обладает любая система, которую можно описать с помощью статистической суммы.
То, что газ обладает Марковским свойством, означает, что как только он придет в состояние равновесия, будет невозможно узнать, каким образом он в него пришел: информация, касающаяся прошлого газа, исчезнет. Два газа одного вещества одной и той же температуры, давления и объема неотличимы, даже если один пришел к этому состоянию с помощью заморозки, а другой — путем разогрева. В других классических системах, таких как бильярдные шары, Марковское свойство не соблюдается: всегда можно восстановить последовательность. В случае с газом теоретически это также можно было бы сделать, но на практике поведение этого состояния материи непредсказуемо.
Марковское свойство довольно полезно в некоторых областях, например в таких как искусственный интеллект, когда необходимо добиться того, чтобы компьютер рассуждал, словно человек, а это обязывает программиста допустить в рассуждениях машины определенную степень случайности. Один из способов сделать это — взять законы логики и применить их для получения вероятностного поведения (такой способ называется логической сетью Маркова).