Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики | страница 23
Вспомним, что положение частицы может быть описано с использованием любого типа координат, необязательно в прямоугольной системе. Поскольку наше пространство имеет три измерения, нам необходимо три числа для указания положения частицы. Координаты могут быть любыми, так что обозначим их через q и добавим какой-нибудь индекс: q>1, q>2 и q>3.
Однако знание положения частицы не дает нам достаточно информации для возможности прогнозировать ее поведение. Для этого мы должны также знать, в каком направлении частица движется и с какой скоростью. В качестве варианта мы можем использовать импульс, который является произведением массы частицы на скорость (этот способ предпочитают физики, поскольку он значительно упрощает вычисления).
Для определения как импульса, так и скорости также нужно три числа. Предположим, что кто-то говорит нам: «Автомобиль выезжает на скорости 100 км/ч из Стамбула. За сколько времени он доедет до Москвы?» Ответ зависит от того, в каком направлении он едет: если авто выезжает на юг, поездка окажется очень длинной, потому что водителю придется обогнуть земной шар, но если он поедет напрямую в сторону Москвы, то прибудет на место намного раньше. Итак, недостаточно знать скорость автомобиля, нам нужно и число для определения направления. Кроме того, если бы у автомобиля была возможность летать, нам понадобилось бы и третье число, чтобы показать, что он движется не вверх, а горизонтально.
Другой способ понимания заключается в том, что у скорости есть три составляющие, по одной для каждого возможного направления. Каждая составляющая говорит нам о скорости, с которой объект движется в этом направлении. Поскольку импульс частицы — это масса, умноженная на скорость, нам также нужны три составляющие, по одной для каждой составляющей скорости.
Так как мы используем обобщенные координаты, каждой координате приписывается обобщенный импульс, обозначенный буквой р. Координате q>1 соответствует импульс p>1 и так далее.
Следовательно, чтобы представить частицу, нам нужно шесть чисел: три для положения и три для импульса, и это означает, что частица движется по шестимерному пространству. Положение частицы можно представить математически, записав три положения, а затем три импульса. Если обозначить положение в этом абстрактном пространстве положений и импульсов через r, мы можем его выразить следующим образом:
r = (q>1, q>2, q>3, p>1, p>2, p>3)
Пространство положений и импульсов называют фазовым пространством. Можно сказать, что частица описывает определенную траекторию в фазовом пространстве: как положение, так и импульс меняются во времени, следуя правилам, заданным уравнениями Гамильтона. Мы можем представить траекторию в фазовом пространстве точно так же, как мы это делаем в обычной жизни: нужно только помнить, что часть этих положений на самом деле представляют собой скорость частицы.