Том 15. От абака к цифровой революции. Алгоритмы и вычисления | страница 16
Этот абак, который представляет собой мраморную табличку, был найден на греческом острове Саламин в 1846 году.
Ученым удалось изучить эти таблички, так как некоторые образцы, например абак с острова Саламин, дошли до наших дней и, кроме того, содержат информацию о значениях, соответствующих столбцам. В этом абаке с острова Саламин каждый столбец означает определенное количество греческих монет. Большие столбцы обозначают (справа налево) 1, 10, 100, 1000 и 10 000 драхм, затем 1, 10, 100, 1000 и 10 000 талантов (один талант равнялся 6000 драхм). Малые столбцы соответствуют дробям. Использовались следующие дробные части драхмы: обол (один обол равнялся 1/6 драхмы), половина обола, четверть обола и халкус (один халкус равнялся 1/8 обола). Камешки, расположенные под линией, обозначают единицу; расположенные над линией — пять единиц. Следовательно, на следующей схеме представлено число 502158 + 2 обола + + 1/2 обола + 1 халкус.
При сложении с помощью абака камешки ставились рядом в соответствии с их позицией. Когда в нижней части накапливалось пять единиц, они заменялись одной единицей в верхней части, а две единицы в верхней части заменялись одной единицей в следующем разряде. При вычислениях с помощью абака следовало помнить, что 6000 драхм равняются одному таланту, а 6 оболов — одной драхме.
Таблица из «Альмагеста» — труда по астрономии, написанного Клавдием Птолемеем во II веке, в котором используются дроби.
Как и вавилонянам, грекам были известны шести десятеричные дроби, о чем упоминает Птолемей в своем «Альмагесте», однако в математических вычислениях греки использовали египетскую систему. В комментариях к трактату Архимеда Евтокий Аскалонский использует
для обозначения 1838 + 1/9 + 1/11, а
для обозначения 2 + 8/11 + 8/11 + 1/99 + 1/121.
Геометрия в Древней Греции находилась на очень высоком уровне развития, и грекам удалось получить более точную оценку числа π, чем их предшественникам. Архимед доказал, что число π лежит в интервале 3 + 10/71 = 223/71 < π < 3 + 1/7 = 22/7 (что соответствует среднему значению 3,141851), а Птолемей получил приближенное значение, равное 3,141666. Эти значения были получены с помощью двух правильных многоугольников (вписанного и описанного).
Гоавюры, посвященные Архимеду (слева) и Птолемею (справа).
Архимед исходил из того, что шестиугольник, вписанный в окружность единичного радиуса, имеет периметр, равный 6, а описанный шестиугольник — 4·√3. Следовательно, число