Искусство думать. Латеральное мышление как способ решения сложных задач | страница 22
Не имеет значения также степень адекватности предложенного описания – вполне может быть, что есть и более адекватные, но мы никогда этого не обнаружим, поскольку удовлетворенность имеющимся описанием или объяснением воспрепятствует поискам любого другого.
Пока отдельные элементы, созданные при произвольном делении первоначальной фигуры, соединяются должным образом, совершенно не важно, каким образом фигура была разделена при описании. Если же процесс является не столько описанием, сколько объяснением фигуры, то элементы не составляются вместе, а исследуются сами по себе. В этом случае выбор способа деления может привести к существенным различиям в объяснении фигуры. Мы склонны быстро забывать, что сами произвольно создали элементы для лучшего понимания ситуации. До момента их создания они вообще не существовали, хотя легко уверовать, что ситуация на самом деле образована из этих элементов. То, что какую-то конструкцию можно расчленить на определенные составные элементы, еще не значит, что она была составлена из этих элементов. Очень часто произвольное создание элементов (как в случае с нашей фигурой) ошибочно принимается за отчетливое восприятие этих элементов и их выделение из целостной структуры. Такое произвольное деление называется разложением на составные части.
Незнакомые ситуации всегда раскладываются на знакомые элементы. Рассматривая такой набор элементов как верное разложение ситуации на составные части, мы тем самым перекрываем путь к лучшему объяснению, для которого могут понадобиться элементы не столь привычные.
На рис. 6 показано разделение фигуры на две части. Получившиеся при этом элементы сложнее большинства использованных прежде, но мы можем описать их как I-образные, или двутавровые, сечения.
Сочетание этих элементов крайне простое: они просто расположены бок о бок. Подобный принцип деления фигуры показывает, насколько выбор элементов может упростить их соотношение.
Мы показали пять способов деления для описания одной и той же фигуры. Существуют и другие способы деления, на которых мы не стали останавливаться, ибо все имеет свои пределы. Возникает вопрос: какое из приведенных выше описаний следует считать наилучшим?
Все описания являются полными постольку, поскольку на части делилась вся фигура и ни одна часть не была опущена. Все деления в равной степени произвольны. Наилучшим, по-видимому, будет то деление, которое позволяет надежнее передать форму фигуры через описание. Дополнительным соображением для оценки деления может служить сложность словесной передачи того или иного описания: в одном случае для описания принципа деления может потребоваться всего лишь несколько слов, в другом – несколько фраз, хотя оба описания будут в равной мере надежными и достоверными. Короче говоря, самым лучшим делением будет то, которое является самым полезным, что бы под этим ни подразумевалось. Сам по себе ни один способ деления не лучше и не хуже других, но он может быть либо лучше, либо хуже в зависимости от контекста.