Инноваторы. Как несколько гениев, хакеров и гиков совершили цифровую революцию | страница 17
Бэббидж знал про устройства Паскаля и Лейбница, но попытался сделать нечто более сложное. Он хотел построить механическую машину для расчетов логарифмов, синусов, косинусов и тангенсов[35]. Для этого он позаимствовал идею французского математика Гаспара де Прони, которую тот выдвинул в 1790-е годы. Для того чтобы составить логарифмические и тригонометрические таблицы, де Прони разбил операции на очень простые шаги, на каждом из которых выполняется только сложение и вычитание. Потом он написал простые инструкции десяткам людей, которые мало что понимали в математике, но могли выполнять эти простые задания, а затем передавали свои результаты следующей группе расчетчиков. Другими словами, он создал сборочный расчетный конвейер — великую инновацию времен промышленной революции, которая была так незабываемо описана и проанализирована Адамом Смитом в его труде о разделении труда на фабрике по производству булавок. После поездки в Париж, где он услышал про метод де Прони, Бэббидж написал: «Я понял вдруг, как применить тот же метод к огромной работе, которой я был завален, и рассчитывать логарифмы по той же схеме, что и производство булавок»>[36].
Бэббидж понял, что даже сложные математические задачи могут быть разбиты на шаги, которые бы свелись к расчету «конечных разностей» с помощью простых операций сложения и вычитания. Например, для того чтобы определить значения квадратов последовательных чисел в 1>2, 2>2, 3>2, 4>2 и так далее, нужно выписать начальные числа в этой последовательности: 1, 4, 9, 16… и сформировать из них столбец А. В соседнем столбце B можно выписать разницу между последовательными числами из столбца А, то есть в данном случае это последовательность чисел 3, 5, 7, 9… В столбец C вносятся разности между последовательными числами столбца B, которые равны 2, 2, 2, 2, После того как процесс был разбит на такие шаги, его можно было развернуть в обратную сторону (то есть по известным постоянным третьим разностям восстанавливать квадраты чисел) и отдать решать задачу не обученным математике расчетчикам. Один из них должен отвечать за добавления двойки к последнему числу из столбца B, а затем передавать этот результат другому, который будет добавлять этот результат к последнему числу из столбца А, получая таким образом следующее значение в последовательности квадратов чисел.
Бэббидж разработал способ автоматизации этого процесса и назвал изобретенное им устройство разностной машиной. Она могла просчитать любую функцию, выраженную в виде многочлена, и давала численный метод аппроксимации решения дифференциальных уравнений.