Экономический анализ | страница 9
Поэтому, прежде чем приступить к расчетам, необходимо:
• выявить четкую взаимосвязь между изучаемыми показателями (явлениями);
• разграничить количественные и качественные показатели;
• правильно определить последовательность подстановок в тех случаях, когда имеется несколько количественных и качественных показателей.
Интегральный метод имеет преимущества, заключающиеся в получении более точных результатов расчета влияния факторов по сравнению с другими методами и исключения неоднородной оценки влияния факторов. Это является следствием того, что результаты расчетов не зависят от местоположения факторов в модели, а дополнительный прирост результативного показателя, который образовался от взаимодействия факторов, раскладывается между ними пропорционально изолированному их воздействию на результативный показатель.
Интегральный метод применяется в мультипликативных, кратных и смешанных моделях с использованием для каждой из них определенных формул.
1. Для двухфакторных мультипликативных моделей.
Пример: ТП = К х Ц.
Расчет изменения выручки за счет:
• количества проданной продукции (ΔТП>к):
ΔТП>к =1/2К х (Ц>пл + Ц>ф);
• цены реализации (ΔТП>ц):
ΔТП>ц =1/2Ц х (К>пл + К>ф).
2. Для кратной двухфакторной модели: А = В/С.
ΔА>общ = А>ф – А>пл;
Способ логарифмирования применяется для измерения влияния факторов в мультипликативных моделях. При логарифмировании используются не абсолютные приросты результативных показателей, а индексы их роста или снижения. Общий прирост результативного показателя распределяется по факторам пропорционально отношениям логарифмов факторных индексов к логарифму индекса результативного показателя.
Способ пропорционального деления используется для аддитивных и кратно-аддитивных моделей.
Алгоритм расчета количественного влияния исследуемого фактора на изменение результативного показателя для аддитивной модели:
• абсолютное изменение результативного показателя делится на сумму абсолютных изменений всех факторов;
• полученный результат умножается на абсолютное отклонение исследуемого фактора.
Пример: Y = х>1 + х>2 + х>3.
Изменение Yза счет фактора х>1:
ΔYх>1 = ΔY>общ /(Δх>1 + Δх>2 + Δх>3) × Δх>1.
Изменение Y за счет фактора х>2:
ΔYх>2 = ΔY>общ /(Δх>1 + Δх>2 + Δх>3) × Δх>2.
Изменение Y за счет факторах,
ΔYх>3 = ΔY>общ /(Δх>1 + Δх>2 + Δх>3) × Δх>3.
Сумма влияния факторов должна быть равна общему изменению результативного показателя.
Метод корреляционно-регрессионного анализа позволяет определить изменение результативного показателя под воздействием одного или нескольких факторов, т. е. определить, на сколько единиц изменяется величина результативного показателя при изменение факторного на единицу, а также позволяет установить относительную степень зависимости результативного показателя от каждого фактора. Корреляционная зависимость проявляется лишь в среднем (как среднее значение) и только в массе наблюдений.