Возникновение и развитие жизни на Земле | страница 19



Нетрудно сделать вывод, что живые организмы в первую очередь используют наиболее доступные атомы, которые, кроме того, способны образовывать устойчивые и кратные химические связи. Известно, что углерод может формировать длинные цепи, что приводит в возникновению бесчисленных полимеров. Сера и фосфор также могут образовывать кратные связи. Сера входит в состав белков, а фосфор — в состав нуклеиновых кислот.

В соответствующих условиях наиболее распространенные атомы соединяются друг с другом, образуя молекулы, которые обнаружены в космических облаках методами современной радиоастрономии. Большая часть известных космических молекул относится к органическим, включая наиболее сложные 8- и 11-атомные. Таким образом, в отношении состава космохимия Вселенной создает обширные возможности для различных комбинаций углерода с другими элементами по законам химической связи.

Однако проблема образования молекул в космических условиях относится к труднейшим проблемам космохимии. Собственно в межзвездной среде, даже в наиболее плотных ее участках, элементы находятся в условиях, далеких от термодинамического равновесия. В силу низкой концентрации вещества химические реакции в межзвездном пространстве крайне маловероятны. Поэтому было высказано предположение, что в построении межзвездных молекул принимают участие частицы космической пыли. В наиболее простом случае могут возникать молекулы водорода при контакте его атомов с твердыми частицами, Наиболее распространенные молекулы космоса СО, вероятно, способны зарождаться в условиях звездных атмосфер при достаточной плотности вещества и затем выбрасываться в космическое пространство.


В настоящее время все более четко вырисовывается роль твердой фазы в формировании молекул органических веществ в космическом пространстве. Наиболее вероятные модели этого процесса разработаны Дж. Гринбергом [1984]. По мнению ученого, частицы космической пыли имеют сложное строение и состоят из ядра преимущественно силикатного состава, окруженного оболочкой из органических веществ. В оболочке, по-видимому, происходят различные химические процессы, ведущие к усложнению строения первоначального вещества. Структура подобных пылевых частиц после первой стадии аккреции подтверждается путем экспериментального моделирования на смеси воды, метана, аммиака и других простых молекул, облученных ультрафиолетовой радиацией при температуре примерно 10 К. Каждая пылинка ведет свое начало от силикатного ядра, возникшего в атмосфере холодной звезды-гиганта. Вокруг ядра формируется ледяная оболочка. Под действием ультрафиолетового излучения некоторые молекулы оболочки (H