Внутренние пути во Вселенную. Путешествия в другие миры с помощью психоделических препаратов и духов | страница 147
КОНЕЦ ЛОКАЛЬНОГО РЕАЛИЗМА И ОГРАНИЧЕНИЯ КВАНТОВОЙ ТЕОРИИ
Самой необычной чертой квантовой реальности является ее независимость от пространственно-временных ограничений классической физики, которые предполагают локальный реализм и локальную обусловленность. Локальный реализм — это комбинация двух интуитивных представлений: 1) принцип локальности, который гласит, что физическое воздействие обладает конечной скоростью распространения, и 2) принцип реальности, который означает, что свойства частиц имеют определенные ценности, независимые от акта наблюдения. Парадокс Эйнштейна-Подольского-Розена (ЭПР) явился первой формулировкой дилеммы: законы квантовой механики не согласуются с предположениями локального реализма. Основываясь на парадоксе ЭПР, Альберт Эйнштейн и другие ученые[258] предположили, что теория квантовой механики несовершенна. Согласно теореме Джона Белла[259], локальный реализм требует инвариантов, которые не представлены в квантовой механике, и ученый делает вывод, что квантовая механика не может удовлетворять требованиям локального реализма. Эксперименты Белла[260] предоставили большое количество эмпирических доказательств против локального реализма и продемонстрировали, что при специальных условиях «кошмарное дальнодействие» (выражение Альберта Эйнштейна) действительно происходит. Различные интерпретации квантовой механики отвергают многие компоненты локального реализма.
В одной из трактовок доказывается несостоятельность локального реализма с помощью принципа нелокальности, который утверждает, что отдаленные объекты могут оказывать непосредственное и мгновенное воздействие друг на друга. Принцип нелокальности восходит к понятию квантовой сцепленности: ряд частиц, взаимодействующих как части одной и той же квантовой системы, влияют друг на друга и после разделения, несмотря на пространственно-временные ограничения. Квантовые состояния двух или более сцепленных объектов должны описываться со ссылкой друг на друга, даже если отдельные объекты разделены световыми годами [261] в пространстве и тысячелетиями во времени. Состояние корреляции сохраняется между наблюдаемыми физическими свойствами систем, связанных в квантовой сцепленности. Сцепленность означает, что вовлеченные системы взаимосвязаны, но это не подразумевает, что сигналы проходят между ними. Выражаясь проще и антропоморфно, сцепленные системы «чувствуют» друг друга вне зависимости от пространственно-временных ограничений.