Резьба по дереву | страница 54



необходимо разделить на 3 части.

Построение овала по заданным осям показано на рис. 14, е. Центры сопрягаемых дуг в данном случае находятся на линии, которая проходит через середину отрезка АЕ. Последовательность построения отрезка АЕ обозначена цифрами 1 и 2.

Построение овоида

Овоид – овал, имеющий одну ось симметрии. Построение овоида показано на рис. 14, ж, где последовательность выполнения обозначена цифрами 1, 2, 3. Чтобы овоид был более удлиненным, центры дуг О1 и О2 отдаляются. Их положение определяется по желанию.

Построение эллипсов

Силуэты овала и овоида не всегда устраивают резчика. Более строгую форму имеет эллипс. Самое простое и распространенное построение эллипса показано на рис. 15, а.

В данном случае производят обвод карандашом с помощью нити, концы которой прикреплены к гвоздикам. Гвоздики вбивают в точки фокусов эллипса F1 и F2. Длина нити должна соответствовать длине отрезка АВ. Форма эллипса определяется отношением его осей. Фокусы эллипса при этом располагаются следующим образом: из точки D циркулем делают засечки на отрезке АВ. Радиус циркуля должен быть равен отрезку АО, то есть большой полуоси. Этот способ очень удобен для построения крупных эллипсов или же тогда, когда есть возможность забить в основу гвозди. Следует отметить, что данное построение может быть не всегда точным.

Наиболее универсальный способ построения эллипса, который не требует нитей и гвоздей, представлен на рис. 15, б. Для построения берут полоску бумаги с ровным обрезом (лучше всего согнуть бумагу вдоль). На полоске бумаги, у ее кромки, делают засечки: расстояние от точки 1 до точки 2 соответствует длине отрезка АО; расстояние от точки 1 до точки 3 соответствует длине отрезка DO. Полоску с засечками перемещают по полю эллипса таким образом, чтобы точки 2 и 3 находились на линиях осей или на их продолжении. В результате получается последовательное перемещение точки 1 по линии эллипса. Полученные в результате чертежа точки отмечают карандашом и соединяют с помощью лекала или от руки.

Удобно строить точки только на четверти эллипса (рис. 15, в). Затем циркулем подбирают радиус для дуги, которая совпадает с большинством точек в крутой части эллипса. Второй радиус – для пологой части эллипса – строят аналогично. В результате построения полученные дуги немного не будут стыковаться. Эти участки доводят от руки. Радиусы, подобранные на четверти эллипса, определяют полные дуги с обеих сторон эллипса. Симметрия и строгость кривой при этом гарантированы. Главное условие для подобного построения – расположение осей точно под прямым углом друг к другу.