Моя краткая история | страница 37



Есть три уровня, на которых можно попытаться ответить на этот вопрос. Первый из них – уровень эйнштейновской общей теории относительности. Это то, что я называю классической теорией, которая говорит, что Вселенная имеет строго однозначную историю без всяких неопределенностей. В классической общей теории относительности получается совершенно законченная картина того, как могут работать путешествия во времени. Мы знаем, однако, что эта классическая теория не может быть верной, поскольку наблюдаем, что материя во Вселенной подвержена флуктуациям, и ее поведение нельзя предсказать точно.

В 1920-х годах была разработана новая парадигма, получившая название квантовой теории, описывающая эти флуктуации и численно характеризующая неопределенность. Это позволяет поставить вопрос о путешествиях во времени на втором уровне, называемом полуклассической теорией. В этом случае квантовые физические поля рассматриваются на фоне классического пространства-времени. Эта картина получается не такой полной, но у нас, по крайней мере, есть определенные представления о том, как с ней обращаться.

Наконец, можно говорить о полностью квантовой теории гравитации, какой бы она ни оказалась. В этом случае неясно даже, как поставить вопрос о возможности путешествий во времени. Быть может, лучшее, что удастся сделать, это спросить, как наблюдатели, находящиеся на бесконечности, будут интерпретировать свои измерения. Будут ли они думать, что путешествие во времени имело место во внутренней области пространства-времени?


Вернемся к классической теории: плоское пространство-время не содержит замкнутых времениподобных кривых. Не было их и в других решениях уравнений Эйнштейна, найденных в первое время. Когда в 1949 году Курт Гёдель обнаружил решение, представлявшее вселенную, заполненную вращающейся материей, с замкнутыми времениподобными кривыми, проходящими через каждую точку, это стало для Эйнштейна настоящим шоком. Решение Гёделя требовало космологической постоянной, которая, как теперь известно, отлична от нуля, но потом были найдены и другие решения, где она не нужна.

Особенно интересный случай, иллюстрирующий это, представляет собой пару космических струн, движущихся одна за другой. Как и следует из их названия, космические струны – это объекты, обладающие длиной при крошечном поперечном сечении. Их существование предсказывают некоторые теории элементарных частиц. Гравитационное поле одной космической струны – это плоское пространство, из которого удален клинообразный сектор, на остром конце которого находится струна. Так что, если обойти вокруг космической струны, пройденный путь окажется меньше ожидаемого, но на время она не влияет. Это означает, что пространство-время вокруг одиночной космической струны не содержит замкнутых времениподобных кривых.