Математики, шпионы и хакеры. Кодирование и криптография | страница 72
pa + qb = k.
В частности, если НОД (a, b) = 1, это соотношение гарантирует существование целых чисел р и q, таких что
pa + qb = 1.
Работая по модулю n, возьмем НОД (а, n) = 1, тогда обязательно существуют целые числа р и q, такие что pa + qn = 1. Так как n — модуль, то qn = 0, следовательно, существует такое р, что pa = 1, то есть существует число, обратное числу а по модулю n, а именно р.
Элементы, имеющие обратный элемент по модулю n, являются натуральными числами, которые меньше, чем n, и удовлетворяют условию НОД (а, n) = 1. Количество таких чисел называется функцией Эйлера и обозначается как ф(n).
Если число n представлено в виде произведения степеней простых чисел следующим образом
Например, если n = 1600 = 2>6∙5>2, то
Более того, в случае, если n — простое число, то для любого значения а выполняется НОД (а, n) = 1, и, следовательно, любое число а будет иметь обратное по модулю n, значит ф(n) = n — 1.
Итак, подведем итог самым важным фактам.
1. ф(n) называется функцией Эйлера и обозначает количество натуральных чисел, меньших n и взаимно простых с ним.
2. Если n = рq, где р и q простые числа, то
a(n) = (p — 1)(q — 1).
3. Из малой теоремы Ферма мы знаем, что если а — целое число, большее нуля, и р — простое число, то а> р
4. Если НОД (а, n) = 1, тогда имеем а>ф(n)
Почему работает RSA-алгоритм?
Математические факты, изложенные выше, лежат в основе алгоритма шифрования RSA.
RSA-алгоритм зашифровывает численное представление m некоторого сообщения с помощью двух простых чисел р и q. Возьмем n = pq. Обозначим за е любое значение, такое что НОД (е, ф(n)) = 1, и пусть d будет обратный элемент числа е по модулю ф(n). [Мы знаем, что он существует, так как НОД (е, ф(n)) = 1]. Тогда:
d∙е = 1 по модулю ф(n).
Зашифрованное послание М шифруется следующим образом: М = m>е (mod n).
Алгоритм подразумевает, что исходное сообщение m может быть получено как m = M>d= (m>e)>d (mod n). Проверка этого уравнения как раз и демонстрирует работу алгоритма RSA. Мы воспользуемся теоремой Ферма и функцией Эйлера.
Рассмотрим два случая.
1. Если (m, n) = 1, то с функцией Эйлера имеем: m>ф(n) 1 (mod n).
Начнем с того, что d∙е = 1 по модулю ф(n) эквивалентно соотношению е∙d — 1 = 0 (mod ф(n)) то есть существует целое значение k, такое, что е∙d — 1 = k∙ф(n) или е∙d = k∙ф(n) + 1. Используя это и формулу Эйлера, получим:
(m>e)>d= m>ed= m> kф(n)+1= m >kф(n)