Teopeма Гёделя | страница 35
1) различным числовым переменным приписываются различные простые числа, большие 10;
2) различным пропозициональным переменным приписываются квадраты различных простых чисел, больших 10;
3) различным предикатным переменным приписываются кубы различных простых чисел, бОльших 10.
>* Кавычки (добавленные при переводе) означают здесь, что подставить можно не само написанное в правом столбце слово, а его формальную запись на языке нашего исчисления. — Прим. перев.
Возьмем какую-нибудь формулу нашей системы, например
Ǝ x (x = sy)
(которую можно прочесть как «существует такое x, что x непосредственно следует за y» и которая выражает то обстоятельство, что для каждого числа есть непосредственно следующее за ним число). Выпишем под каждым из входящих в нее символов его (символа) гёделевский номер:
Ǝ x ( x = s у )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
4 11 8 11 5 7 13 9
Конечно, нам бы хотелось сопоставить каждой формуле не набор номеров (как пока получилось), а один-единственный определенный номер. Но это очень легко сделать. А именно: сопоставим этой формуле произведение первых восьми простых чисел в порядке их величины, причем каждое из них в степени, показатель которой равен гёделевскому номеру соответствующего элементарного символа:
2>4 × 3>11 × 5>8 × 7>11 × 11>5 × 13>7 × 17>13 × 9>9.
Обозначим это число, скажем, через m. Точно таким же образом мы можем приписать в качестве гёделевского номера единственное вполне определенное натуральное число каждой конечной последовательности элементарных символов, в частности каждой формуле, причем число простых сомножителей такого числа всегда будет равно числу вхождений элементарных символов в обозначаемой формуле.
>В исчислении могут использоваться и символы, не входящие в его исходный («основной») алфавит; такие символы вводятся посредством определений, записанных в терминах исходных (и вообще ранее определенных) символов. Например, в наше исчисление можно ввести новый символ (константу) «·», обозначающий союз «и», определив его таким образом, чтобы запись «