Teopeма Гёделя | страница 17
«Меташахматное» утверждение может, например, гласить, что в данной позиции у белых возможны двадцать различных ходов, или, скажем, что в данной позиции белые, начиная, могут заматовать черных за три хода. Более того, можно говорить и об общих «меташахматных» теоремах, в доказательствах которых используется наличие лишь конечного числа возможных позиций. Можно, например, получить теорему относительно числа возможных ходов для белых в начальной (или любой другой) позиции; или, скажем, доказать теорему, согласно которой два белых коня с королем не могут форсировать мат одинокому черному королю. Эти и другие «меташахматные» теоремы удается, таким образом, доказывать, пользуясь финитными методами рассуждений, т. е. исследуя лишь конечное число возможных позиций, удовлетворяющих четко сформулированным условиям. Совершенно аналогично цель гильбертовской теории доказательства состоит в доказательстве такого же рода финитными методами невозможности вывода противоречащих друг другу формул в данном математическом исчислении.
4
Систематическое построение формальной логики
Прежде чем перейти к самой теореме Гёделя, нам придется преодолеть еще два препятствия. Прежде всего нам надо разобраться, зачем, собственно, ему понадобилась Principia Mathematica Уайтхеда и Рассела и в чем суть этой системы; далее, нам понадобится рассмотреть в качестве примера формализации дедуктивной системы один небольшой фрагмент системы Principia,и показать, как можно получить абсолютное доказательство непротиворечивости этого фрагмента.
Обычно, даже если математические доказательства проводятся с соблюдением общепринятых норм профессиональной строгости, эта строгость существенно умаляется в результате некоторого упрощения весьма принципиального характера. Дело в том, что принципы (правила) вывода, употребляемые в доказательствах, в явной форме не формулируются, так что математики применяют их не вполне осознанно. Возьмем, например, евклидовское доказательство того факта, что не существует наибольшего простого числа (целое число, как известно, называется простым, если оно не делится без остатка ни на одно число, кроме единицы и самого себя). Доказательство, проводимое методом reductio ad absurdum (от противного), выглядит следующим образом.
Пусть, в противоречии с доказываемым утверждением, имеется наибольшее простое число. Обозначим его через «x». Тогда:
1. x есть наибольшее простое число.
2. Образуем произведение всех простых чисел, меньших или равных