Teopeма Гёделя | страница 13



До сих пор мы говорили, что «бессмысленные» значки такой формализованной математики ничего не утверждают— это пока просто некая абстрактная картинка, иллюстрирующая строение интересующей нас системы. Но, конечно, строение такой картинки — а тем самым и иллюстрируемой ею системы — мы можем описывать на обычном человеческом языке, делая определенные высказывания, относящиеся к ее общей конфигурации и соотношениям отдельных ее элементов.

Мы можем, например, отметить простоту или симметричность какой-нибудь «строчки», сходство ее с некоторой другой «строчкой» можем заметить, что одна «строчка» может быть представлена в виде сочленения трех других «строчек» и т. п. Такие высказывания, безусловно, осмыслены и, более того, могут выражать весьма существенную информацию о нашей формальной системе. Следует, однако, сразу же отметить, что все эти осмысленные высказывания о бессмысленной (или, что то же самое, — формализованной) математике никоим образом не принадлежат сами по себе этой математике. Они относятся к области, которую Гильберт назвал «метаматематикой», к языку, на котором говорят о математике. Метаматематические высказывания — это высказывания о символах, входящих в формализованную математическую систему (т. е. в исчисление), о видах символов, об их упорядочении внутри формальной системы, о способах составления из этих символов более длинных знакосочетаний («строчек»), которые естественно называть «формулами» системы, наконец, о соотношениях между формулами, в частности о том, какие формулы могут быть получены (по фиксированным нами правилам обращения с ними) в качестве «следствий» других формул.

Приведем несколько примеров, иллюстрирующих различие между математикой и метаматематикой. Скажем, выражение «2+3=5» принадлежит математике (арифметике) и строится исходя лишь из элементарных арифметических символов, в то время как высказывание «„2+3=5“ есть арифметическая формула» утверждает нечто об этом выражении. Оно само по себе не выражает никакого арифметического факта и не принадлежит формальному языку арифметики, а относится к метаматематике, характеризуя некоторую строчку, составленную из арифметических символов, как формулу.

Формулы

x = x,

0 = 0,

0 ≠ 0

принадлежат математике (арифметике); каждая из них составлена из одних только арифметических знаков. Высказывание же «„x“ есть переменная» относится уже к метаматематике, поскольку оно характеризует некоторый арифметический символ, утверждая, что он принадлежит некоторому специальному классу символов (а именно, классу переменных). Принадлежит метаматематике и высказывание «формула „0 = 0“ выводима из формулы „