Искатель, 2013 № 10 | страница 21



Я не ощущаю прежнего страха. Мне покойно. И теперь, пока не пришла медсестра совершать надо мной ритуальные действия, пока не явился кто-нибудь из врачей поглядеть на неизменные за много дней показания приборов, пока не прибежала Лера с возбужденным рассказом о том, что Кен наконец-то поцеловал ее, пока в палате тихо и одиноко, я могу попробовать доказать наконец седьмую теорему и… Сначала — доказать. Доказательство подскажет следствия.

Заставляю себя не думать о женщине. О поцелуе. Об Алене и Гардинере. О Лере. Ни о ком, и тем более о собственном понимании справедливости.

Если, как это следует из сложения бесконечномерных событийных пространств Шведера…


Доказав первую теорему инфинитного исчисления, Дорштейн сам был, по его словам, шокирован простотой принятого постулата. Почему математики раньше не пришли к этой идее? «Дело в том, — сказал он на конференции в Принстоне, — что прежде это никому не было нужно. Чтобы математику пришло в голову кардинально пересмотреть основы своей науки, требовались кардинальные изменения представлений об устройстве мироздания. А это произошло только сейчас».

Он еще добавил, не сказав, впрочем, ничего принципиально нового по сравнению с Типлером:

«Мироздание — это математика. Математика не описывает реальность, она является реальностью. Физика вторична, она позволяет нашему сознанию воспринимать математику природы. Если бы аксиомы инфинитного исчисления были сформулированы пол века назад — к тому были все предпосылки, особенно после разработки концепции Эверетта, суперструн, бран, ландшафтных вселенных, — физики не потеряли бы столько времени, придумывая теории, сейчас выглядящие архаичными, как дома с множеством архитектурных излишеств в стиле рококо или барокко, построенные в центре современного делового квартала».

Дорштейн был прав, конечно.

Идеи инфинитного исчисления просты и доступны настолько, что расчеты можно, за редким исключением, проводить в уме. В статьях по инфинитному анализу чаще, чем в любой другой математической работе, можно встретить выражения вроде: «из сказанного с очевидностью следует, что…». Разумеется, есть у нас свой, достаточно сложный, математический аппарат, изобретенный тем же Дорштейном и развитый затем Черномским, Шведером, да и я добавил кое-что. Нам, работающим в математике бесконечного, эти формулы представляются образцом простоты. Студенты, которым инфинитное исчисление стали преподавать наравне с дифференциальным и интегральным, уверяют, что изучать новый раздел математики куда легче, чем интегралы, в которых черт ногу сломит. Наверно. Не мне судить. Я слишком глубоко погрузился в этот мир.