Учитель | страница 3



Поскольку мне предстоит рассказывать о Математике, невозможно совсем не касаться его науки. Я постараюсь удержаться от технических подробностей, формул и т. д., оставаясь скорее в рамках общефилософского контекста математических открытий и концепций. Читатель, которому эти части очерка покажутся трудными или скучными, может просто просматривать или даже опускать их.

Математику часто называют Царицей Наук. Действительно, именно она лежит в основании всего свода точных знаний, без которых немыслима наша цивилизация. К этому можно добавить невероятную красоту некоторых математических открытий, настоящих жемчужин нашего Духа. Вот, например, теорема Пифагора (приблизительно 580 г. — 500 г. до новой эры), пожалуй, самый известный математический факт, если оставить в стороне, что дважды два равно четырём. Недаром в многочисленных проектах посланий иным цивилизациям Пространства почти всегда фигурирует чертёж доказательства этой теоремы, поскольку представляется очевидной универсальность геометрической истины, общей любым проявлениям Интеллекта. Чертёж этот вошел даже и в грубоватую пословицу («пифагоровы штаны на все стороны равны»). В той же Пифагоровской школе были открыты иррациональные числа[5]. Значение этого события трудно переоценить, несомненно, речь идёт об одном из величайших достижений человеческого Духа. В геометрических терминах суть дела состоит в том, что сторона и диагональ квадрата не имеют общей меры. Невозможно найти такой эталон длины, который уложится целое число раз в обеих измеряемых длинах. Отсюда следует, что если установить стандарт длины, скажем, один см, и пытаться измерять в получившейся системе диагональ квадрата со стороной 1 см, то процесс измерения будет необходимо бесконечным. Греческие учёные шестого века до нашей эры оказались, таким образом, перед нелёгким выбором: либо признать существование новых иррациональных (сам термин говорит о некотором замирании сердца) чисел, либо допустить, что некоторые интервалы не имеют длины вообще (какой удар по геометрической интуиции!). Таким образом, в поле деятельности человека появились новые, идеальные объекты, соприкасающиеся с бесконечностью, и далеко выходящие за рамки непосредственного чувственного опыта[6]. С этим же открытием связана и знакомая почти по начальной школе процедура деления целых чисел с остатком, которую можно обобщить до процедуры нахождения наибольшего общего делителя двух положительных целых чисел. Эти древнейшие алгорифмы носят имя Евклида, греческого учёного, жившего в третьем веке до нашей эры. Его же традиция считает автором так называемых «Элементов» («Начала», 15 книг), свода греческой математики. Особенное значение имеет выполненное в «Элементах» аксиоматическое построение геометрии