Учитель | страница 15



. Можно говорить о множестве яблок на данной яблоне, о множестве слушателей в данном концертном зале и т. д. Математика естественно больше интересуют множества, связанные с его профессиональной деятельностью. Например, можно говорить о множестве всех нечётных совершенных чисел (ср. выше). Никто сегодня не знает, содержит ли это множество хоть один элемент[44].

При рассмотрении множеств Кантор свободно пользовался так называемой абстракцией актуальной бесконечности, позволяющей рассматривать бесконечные совокупности одновременно существующих объектов. Наряду с этой абстракцией в философии с античных времён рассматривалась не столь драматическая идея потенциальной, становящейся бесконечности. Проще всего объяснить имеющееся здесь различие на примере положительных целых чисел. Эти числа возникают в процессе естественного счёта — один, два, три… В каждый момент времени считающий субъект достигает определённого этапа, определённого числа… Идея потенциальной бесконечности, потенциальной осуществимости позволяет отвлечься здесь от ограниченности наших возможностей в пространстве и времени, по существу отвлечься от нашей смертности, и считать, что сколь угодно большие числа (скажем, миллиард миллиардов) могут быть достигнуты в процессе счёта. Но при всём этом в каждый момент времени только определённое число будет достигнуто считающим субъектом, у которого, однако, будет оставаться возможность продолжения счёта. Выражаясь метафорически, за каждым настоящим временем будет оставаться время будущее. Абстракция актуальной бесконечности состоит в гораздо более смелом акте воображения, при котором весь процесс счёта мыслится завершённым, все числа достигнутыми, одновременно существующими, все времена счёта осуществившимися…

Идею потенциальной бесконечности можно связать с оптимистической верой в наше родовое бессмертие: то, что не успею сделать я, сделают дети, ученики, последователи, дети детей, ученики учеников и т. д. С другой стороны, поэты всех времён и народов воспевали бесконечность звёзд в ночном небе. Самого простого акта поэтического воображения достаточно, чтобы воспринимать ряд телеграфных столбов, уходящих за горизонт, или же уходящую за горизонт ленту шоссе, как явления бесконечные, даже если хорошо знаешь, что это шоссе Москва — Симферополь…

Различие между двумя видами бесконечности, очевидно, скорее интеллектуальное, для наших ежедневных дел несущественное. Однако оно имеет огромное практическое значение при построении математики.