Математика как единый источник мировых религий | страница 2
Кроме того, любая строка этой таблицы, параллельная боковым сторонам треугольника, а также её вертикальные столбцы являются геометрическими местами произведений двух идущих подряд (в этой же строке или столбце) чисел. Примеры: 5 * 10 = 50. Ответ находится в пятой ячейке от числа 5.
Рис. 9
7 * 14 = 98. Ответ в седьмой ячейке от числа 7.
Рис. 10
6 * 12 = 72. Ответ в шестой ячейке от числа 6.
Рис. 11
Внимательно изучая таблицу с двоичным приращением строки, вы вслед за автором повторите открытие пифагорейцев — левая сторона числового треугольника показывает, что сумма третьих степеней всех чисел НЧР, взятых подряд, начиная с единицы, равна квадрату их же суммы. Например: (1*1*1)+(2*2*2)+(3*3*3) = (1+2+3)*(1+2+3)= 36.
Вы можете построить такую таблицу, начиная с любого числа. См. рис. 12. Звёздочками отмечены квадраты.
Рис. 12
Возмущённая система, поколебавшись, через некоторый числовой промежуток приведёт себя в порядок и восстановит свою универсальность, изменив только направление результирующих числовых осей.
НЧР оказался столь остроумно устроен, что автору видится за этой конструкцией улыбающееся лицо Инженера, ведь остроумие присуще интеллекту, а никак не «первичной» бессознательной материи. Вначале была Программа.
“Ужель та самая” Программа? Ещё нет, это неправильная коническая развёртка натурального числового ряда. Неправильная, потому что её нельзя свернуть в конус, так чтобы числовые строки соединились в единую числовую спираль без зазоров или нахлёстов. Не позволяют это сделать квадратные ячейки, в которых мы расположили числовой ряд. Свернуть числовой ряд в конус можно только в том случае, если его ячейки будут правильными шестиугольниками.
Рис. 13
И так далее
Получившаяся сотовая структура представляет из себя правильную коническую развертку спирали НЧР, сохранившую все закономерности предыдущей развёртки. При сворачивании развёртки в конус, мы как бы застёгиваем её на молнию, стягивающую числовую ось квадратов N*N — 1, 4, 9, 16… с числовой осью N*(N+2) — 3, 8, 15, 24…
Шестигранные ячейки без изъянов прилегают друг к другу.
Вот такие «чудеса в решете», в сотовом решете.
Число характеризуется его величиной, а не линейными размерами, поэтому размеры числовой ячейки могут быть любыми.
Изменяя размеры числовой сотовой ячейки от бесконечно малых до бесконечно больших, мы получим бесконечное число конусов-матрёшек, вложенных друг в друга. Это не пустой кулёк из- под семечек, который можно смять и выбросить!