Великие противостояния в науке. Десять самых захватывающих диспутов | страница 33



(Гоббсова неточечная точка»).

Гоббс прекратил перепалку в 1657 году, так как хотел закончить задуманную трилогию. Валлис тоже нашел своему времени более достойное применение и занялся написанием обстоятельного трактата на тему, которую сейчас мы назвали бы изобретением исчисления бесконечно малых величин. Этот труд был издан в том же году и назывался небезосновательно Mathesis Universalis («Общая математика»).

Какое-то время было затишье. Но в 1660 году Гоббс опять вернулся на ринг. Он подверг детальной критике труды Валлиса, написав пять диалогов между двумя собеседниками А и Б. В ответ на это Валлис заявил, что А и Б — это Томас и Гоббс, и их диалог не что иное, как дискуссия, в которой «Томас хвалит Гоббса, а Гоббс хвалит Томаса, и они оба хвалят Томаса Гоббса как третье лицо, не рискуя при этом быть обвиненными в самовосхвалении»>{52}.

Гоббс дал ответ на это в 1666 году. Он стремился уязвить достоинство всех профессоров геометрии. С этой целью он заявил, что ему, по-видимому, придется сражаться «практически со всеми геометрами», и придумал фразу: «Либо я один сошел с ума, либо я один не сошел с ума, третьего не дано, разве что кто-либо докажет, что мы все сошли с ума»>{53}.

В это время Лондонское Королевское общество начало издавать серию «Философские труды», которая, кстати, издается по сей день. Валлис воспользовался представившейся возможностью и в августе 1666 года опубликовал «Критику последнего труда мистера Гоббса De Principiis et Ratiocinatione Geometrarum», в которой развивает затронутую Гоббсом тему о безумии. Он утверждает, что вряд ли имеет смысл опровергать сказанное в книге Гоббса, так как если то, что сказал о себе Гоббс, правда, то тогда «опровержение будет либо бесполезно, либо бессмысленно. […] Потому что если это он безумен, то нет надежды, что его можно будет убедить разумными доводами, а если это мы безумны, то мы не в состоянии даже пытаться убедить его»>{54}. Позже, комментируя заявление Гоббса, он писал: «Но почему изогнутость дуги должна называться углом обхвата? Я не нахожу другого объяснения, кроме того, что мистер Гоббс предпочитает называть гвоздем то, что другие именуют панихидой»>{55}.

В 1669 году Гоббс, которому было уже за 80 и который, очевидно, был уже не в состоянии оценивать свои реальные возможности, опубликовал все свои работы по решению задачи о квадратуре круга и еще двух других не менее известных геометрических задач древнегреческого мира — о кубатуре сферы и геометрическом удвоении куба. И снова, как только эти работы были изданы, Валлис с неослабевающим упорством раскритиковал их в пух и прах. И снова завязалась письменная перепалка. Она продолжалась до 1672 года. После очередного хода Валлиса Гоббс не ответил. В 1678 году в возрасте 90 лет он закончил свой новый труд