Искра жизни. Электричество в теле человека | страница 42



К середине прошлого столетия все понимали, что нервы и мускулы передают информацию с помощью электрических импульсов, однако как нервные импульсы генерируются и распространяются по волокнам, было загадкой.

Первые эксперименты, проложившие путь к решению этой загадки, проводились с использованием нервных волокон кальмара, в результате чего это живое существо заняло особое место в сердцах физиологов. Человеком, обнаружившим, что у обычного кальмара (Loligoforbesii) нервное волокно видно невооруженным глазом, был Джон Янг. Высокий, с копной серебряных волос, полный заразительного энтузиазма, Джон Янг оставлял неизгладимое впечатление. Каждое лето он убегал от всех в Плимут или в Неаполь, чтобы заниматься исследованием осьминогов и кальмаров. Именно там он впервые обратил внимание на то, что мантия кальмара пронизана нервными волокнами огромной толщины. Эти гигантские клетки проводят нервные импульсы очень быстро и позволяют кальмару мгновенно скрываться от врага, с силой выбрасывая струю воды. Они также обеспечивают исследователей бесценным препаратом для изучения процесса генерирования нервных импульсов и дают превосходный предлог для проведения времени на морском побережье. Особой популярностью пользуются две морские лаборатории, где всегда есть свежие кальмары: лаборатории биологии моря в Плимуте (Англия) и в Вудс-Хоуле на полуострове Кейп-Код (США).

Огромные размеры аксона кальмара — диаметр от половины миллиметра до миллиметра — позволяли ввести электрод непосредственно в аксон и измерить разность потенциалов между точками внутри и снаружи клетки. Впервые такой эксперимент провели в начале августа 1939 г. два молодых ученых из Кембриджа: Алан Ходжкин и Эндрю Хаксли2. Для Хаксли, который тогда был еще студентом, эксперимент был первой пробой сил в сфере научных исследований. Они осторожно выделили одно гигантское нервное волокно, подвесили его вертикально на крючке и ввели тонкий серебряный электрод (защищенный стеклянным капилляром) в продольном направлении в центр аксона, не касаясь стенок. Второй электрод был помещен в морскую воду, окружавшую аксон. Это позволило определить разность потенциалов просто путем измерения напряжения между электродами.


Потенциал действия. Показаны отрицательный мембранный потенциал покоя и кратковременный положительный скачок, происходящий при генерировании импульса нервной клеткой.

Измерения показали, что внутренний потенциал нервной клетки в спокойном состоянии примерно на 50 мВ более отрицателен, чем наружный потенциал. Такой результат не был неожиданным, поскольку предположения об отрицательном потенциале покоя уже высказывались. Он возникает в результате утечки положительно заряженных ионов калия из клетки в состоянии покоя, как уже говорилось в предыдущей главе. Сюрпризом оказалось то, что при возбуждении нерва с помощью небольшого электрического разряда и генерировании нервного импульса разность потенциалов на мембране кратковременно изменялась на противоположную и внутриклеточный потенциал становился почти на 50 мВ более положительным, чем наружный. Такой «положительный скачок» потенциала полностью перечеркивал существовавшие представления и требовал переосмысления механизмов функционирования нервов.