Разработка ядра Linux | страница 74
Передача процессорного времени
Операционная система Linux предоставляет системный вызов >sched_yield()
как механизм, благодаря которому процесс может явно передать процессор под управление другим ожидающим процессам. Этот вызов работает путем удаления процесса из активного массива приоритетов (где он в данный момент находится, потому что процесс выполняется) с последующим помещением этого процесса в истекший массив. Получаемый аффект состоит не только в том, что процесс вытесняется и становится последним в списке заданий с соответствующим приоритетом, а также в том, что помещение процесса в истекший массив гарантирует, что этот процесс не будет выполняться некоторое время. Так как задачи реального времени никогда не могут быть помещены в истекший массив, они составляют специальный случай. Поэтому они только перемещаются в конец списка заданий с таким же значением приоритета (и не помещаются в истекший массив). В более ранних версиях ОС. Linux семантика вызова >sched_yield()
была несколько иной. В лучшем случае задание только лишь перемещалось в конец списка заданий с данным приоритетом. Сегодня для пользовательских программ и даже для потоков пространства ядра должна быть полная уверенность в том, что действительно необходимо отказаться от использования процессора, перед тем как ввязывать функцию >sched_yield()
.
В коде ядра, для удобства, можно вызывать функцию >yield()
, которая проверяет, что состояние задачи равно >TASK_RUNNING
, а после этого вызывает функцию >sched_yield()
. Пользовательские программы должны использовать системный вызов >sched_yield()
.
В завершение о планировщике
Планировщик выполнения процессов является важной частью ядра, так как выполнение процессов (по крайней мере, для большинства из нас) — это основное использование компьютера. Тем не менее, удовлетворение всем требованиям, которые предъявляются к планировщику — не тривиальная задача. Большое количество готовых к выполнению процессов, требования масштабируемости, компромисс между производительностью и временем реакции, а также требования для различных типов загрузки системы приводят к тому, что тяжело найти алгоритм, который подходит для всех случаев. Несмотря на это, новый планировщик процессов ядра Linux приближается к тому, чтобы удовлетворить всем этим требованиям и обеспечить оптимальное решение для всех случаев, включая отличную масштабируемость и привлекательную реализацию.