Разработка ядра Linux | страница 65



и повторяется проверка условия.

• Когда условие выполнено, задача может установить свое состояние в значение >TASK_RUNNING и удалить себя из очереди ожидания с помощью функции >remove_wait_queue().

Если условие выполнится перед тем, как задача переходит в приостановленное состояние, то цикл прервется и задача не перейдет в приостановленное состояние по ошибке. Следует заметить, что во время выполнения тела цикла код ядра часто может выполнять и другие задачи. Например, перед выполнением функции >schedule() может возникнуть необходимость освободить некоторые блокировки и захватить их снова после возврата из этой функции; если процессу был доставлен сигнал, то необходимо возвратить значение >-ERESTARTSYS; может возникнуть необходимость отреагировать на некоторые другие события.

Возврат к выполнению (wake up) производится с помощью функции >wake_up(), которая возвращает все задачи, ожидающие в данной очереди, в состояние готовности к выполнению. Вначале вызывается функция >try_to_wake_up(), которая устанавливает поле состояния задачи в значение >TASK_RUNNING, далее вызывается функция >activate_task() для добавления задачи в очередь выполнения и устанавливается флаг >need_resched в ненулевое значение, если приоритет задачи, которая возвращается к выполнению, больше приоритета текущей задачи. Код, который отвечает за наступление некоторого события, обычно вызывает функцию >wake_up() после того, как это событие произошло. Например, после того как данные прочитаны с жесткого диска, подсистема VFS вызывает функцию >wake_up() для очереди ожидания, которая содержит все процессы, ожидающие поступления данных.

Важным может быть замечание о том, что переход в приостановленное состояние часто сопровождается ложными переходами к выполнению. Это возникает потому, что переход задачи в состояние выполнения не означает, что событие, которого ожидала задача, уже наступило: поэтому переход в приостановленное состояние должен всегда выполняться в цикле, который гарантирует, что условие, на которое ожидает задача, действительно выполнилось (рис. 4.3).

Рис. 4.3. Переход в приостановленное состояние (sleeping) и возврат к выполнению (wake up)

Балансировка нагрузки

Как уже рассказывалось ранее, планировщик операционной системы Linux реализует отдельные очереди выполнения и блокировки для каждого процессора в симметричной многопроцессорной системе. Это означает, что каждый процессор поддерживает свой список процессов и выполняет алгоритм планирования только для заданий из этого списка. Система планирования, таким образом, является уникальной для каждого процессора. Тогда каким же образом планировщик обеспечивает какую-либо глобальную стратегию планирования для многопроцессорных систем? Что будет, если нарушится балансировка очередей выполнения, скажем, в очереди выполнения одного процессора будет находиться пять процессов, а в очереди другого — всего один? Решение этой проблемы выполняется системой балансировки нагрузки, которая работает с целью гарантировать, что все очереди выполнения будут сбалансированными. Система балансировки нагрузки сравнивает очередь выполнения текущего процессора с другими очередями выполнения в системе.