Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим | страница 43



Описанные изменения образа мышления знаменуют радикальные преобразования. Они ведут к третьему шагу, который может во многом подорвать устои общества, основанного на понимании причин всех событий. Вместе с тем поиск логических взаимосвязей между данными и выполнение действий с ними (что и является темой следующей главы) зачастую дают вполне достойный результат. 

Глава 4

Корреляция

В 1997 году 24-летний Грег Линден на время отложил свою докторскую диссертацию в области искусственного интеллекта в Вашингтонском университете, чтобы поработать над местным стартапом по продаже книг в интернете. Этот онлайн-магазин появился всего два года назад, но уже вел оживленную торговлю. «Мне очень понравилась идея продавать книги, продавать знания, а еще помогать людям находить следующий источник знаний, с которым они с удовольствием бы ознакомились», — вспоминает Грег. Этим магазином был Amazon.com, и Линден был нанят в качестве инженера-программиста для обеспечения бесперебойной работы сайта.

Среди сотрудников компании Amazon были не только технари. В то время там работала дюжина литературных критиков и редакторов, которые писали отзывы и предлагали новые наименования. Хотя история сайта Amazon хорошо знакома большинству людей, мало кто помнит о том, что его контент первоначально создавался вручную. Редакторы выбирали наименования, которые рекомендовались на веб-страницах Amazon. Редакторский отдел отвечал за так называемый «голос Amazon», который по праву считался гордостью компании и источником ее конкурентного преимущества. Примерно в то же время вышла статья в Wall Street Journal, в которой сотрудников отдела чествовали как самых влиятельных литературных критиков страны, поскольку им удавалось стимулировать высокий уровень продаж.

Затем Джефф Безос, основатель и СЕО[53] Amazon, начал экспериментировать с многообещающей идеей: что если рекомендовать конкретные книги отдельным клиентам в зависимости от их предыдущих покупок? С момента начала деятельности Amazon компания накопила массу данных о каждом клиенте: о покупках, о просмотренных, но не приобретенных книгах и времени, затраченном на их просмотр, а также о книгах, приобретенных одновременно.

Объем данных был настолько внушительным, что поначалу Amazon приходилось обрабатывать их обычным способом — путем отбора выборки и ее анализа с целью выявить сходство между клиентами. Рекомендации выходили приблизительными. Купив книгу о Польше, вы получили бы массу предложений по Восточной Европе, а купив книгу о детях — завалены подобной литературой. «Как правило, вам предлагались небольшие вариации на тему вашей предыдущей покупки. И так до бесконечности, — вспоминает Маркус Джеймс, литературный критик Amazon в 1996–2001 годах, в своих мемуарах Amazonia. — Создавалось ощущение, что вы отправились за покупками с бестолковым советчиком».