Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим | страница 29
К ХІХ веку во Франции (в то время ведущей стране в мире по уровню развития науки) была разработана система строго определенных единиц измерения для сбора данных о пространстве, времени и не только. Другие страны перенимали эти стандарты. Дошло до того, что признанный во всем мире эталон единиц измерения стал закрепляться в международных договорах. Это явилось вершиной эпохи измерений. Лишь полвека спустя, в 1920-х годах, открытия в области квантовой механики навсегда разрушили веру в возможность достичь совершенства в измерениях. Тем не менее, не считая относительно небольшого круга физиков, инженеры и ученые не спешили расставаться с мыслью о совершенстве измерений. В деловой сфере эта идея даже получила более широкое распространение, по мере того как рациональные науки — математика и статистика — начали оказывать влияние на все области коммерческой деятельности.
Между тем множатся ситуации, в которых неточность воспринимается скорее как особенность, а не как недостаток. Взамен снижения стандартов допустимых погрешностей вы получаете намного больше данных, с помощью которых можно совершать новые открытия. При этом действует принцип не просто «больше данных — какой-то результат», а, по сути, «больше данных — лучше результат».
Нам предстоит иметь дело с несколькими видами беспорядочности. Это может быть связано с тем, что при добавлении новых точек данных вероятность ошибок возрастает. Следовательно, если, например, увеличить показатели нагрузки на мост в тысячу раз, возрастет вероятность того, что некоторые показатели будут ошибочными. Вы увеличите беспорядочность, сочетая различные типы информации из разных источников, которые не всегда идеально выравниваются. Или, определив причину жалоб, направленных в центр обработки заказов с помощью программного обеспечения для распознавания речи, и сравнив эти данные со временем, затраченным со стороны оператора на их обработку, можно получить несовершенную, но полезную общую картину ситуации. Кроме того, беспорядочность иногда связана с неоднородностью форматирования. В таком случае, прежде чем обрабатывать данные, их следует «очистить». «Существуют буквально тысячи способов упомянуть компанию IBM, — отмечает знаток больших данных Дж. Патил, — от IBM до International Business Machines и Исследовательского центра Т. Дж. Уотсона».[39] Беспорядочность может возникнуть при извлечении или обработке данных, поскольку путем преобразования мы превращаем их в нечто другое. Так, например, происходит, когда мы анализируем настроения в сообщениях Twitter, чтобы прогнозировать кассовые сборы голливудских фильмов. А беспорядочность сама по себе… беспорядочна.