Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть | страница 40



Между предыдущим мартом и ноябрем поведение Сьюзен было похоже на поведение Мэри. Однако с ноября она начала значительно реже пользоваться услугами нашей авиакомпании.

Судя по всему, речь идет о каких-то системных изменениях. Именно поэтому я считаю, что у нее имеется куда бо́льшая вероятность снижения количества полетов в ближайшие двенадцать месяцев, чем у Мэри.

А поведение Тома кажется совсем иным – оно не носит системного характера. Он стал летать всего два раза в месяц, а в последующие месяцы практически совсем прекратил полеты. Вот почему я совершенно не уверен, что будет происходить с доходами от полетов Тома в следующие двенадцать месяцев.

Уверен, вы поставили Мэри, Сьюзен и Тому примерно такие же оценки, ведь мы все склонны интуитивно анализировать поведение людей примерно сходным образом. Мы посмотрели, насколько часто наши участники летали в среднем, насколько сильно могут колебаться данные от месяца к месяцу, насколько сильно просел показатель количества полетов в марте и приняло ли это характер тенденции.

Я могу создать статистический алгоритм, способный анализировать эту информацию так же, как мы это делаем в своем подсознании. Для этого мне нужно преобразовать наши интуитивно важные факторы в математические переменные. Вот как это могло бы работать.

В крайней правой колонке содержатся переменные нашей модели, буквально предсказывающей вероятность снижения доходов. Статистическая модель выявляет клиентов, доход от которых сократился на 20, 50 и 80 % за прошлый год, затем изучает значение предсказывающих переменных (чуть подробнее об этом ниже) за двенадцать месяцев до начала снижения доходов. Это позволит «научить» модель рассчитывать вероятность того, что расходы какого-то клиента могут снизиться на определенный процент. Безусловно, это довольно существенная информация. Если вы знаете, что один (или несколько) из ваших наиболее важных клиентов (приносящих вам доходы и прибыль) собирается уйти от вас, вы можете предпринять шаги по предотвращению этого. Как минимум вы выясните у них причины ухода и, возможно, предложите им стимулы (скидки, улучшение условий обслуживания и что-то еще), заставляющие их остаться.

Итак, мы с вами рассмотрели данные и практически интуитивно поняли, кто перестанет быть нашим клиентом. Однако в подобных ситуациях лучше воспользоваться статистическими моделями, что будет более эффективно, чем ваша интуиция. Модели могут не только принимать решение, подобное нашим, и делать это гораздо быстрее, но и повторять тот же алгоритм размышлений в отношении тысяч, а то и миллионов других мэри, сьюзен и томов. В дополнение к этому модель способна изучать сотни различных предсказывающих переменных. Переменные в таблице можно сопоставить со всеми остальными нашими знаниями о клиенте: возрасте, поле, национальности, почтовом индексе, использовании призовых баллов программы лояльности (для оплаты билетов, покупки товаров или какой-то комбинации обоих вариантов) – причем практически одновременно. Поэтому статистическое моделирование стало таким мощным инструментом.