Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть | страница 17
Вооружившись всей информацией, я направился в десятое здание Cisco – именно там, в этом корпоративном святилище, сидели и председатель правления Джон Чемберс, и СЕО компании, и высшие руководители, такие как Джеймс Ричардсон. Я почувствовал всю серьезность момента. Не каждый день вам приходится делать презентации для всего руководства компании вроде Cisco. Помню, мне пришлось изрядно поспорить с Хизер, моей коллегой, которая отвечала в Ogilvy за отношения с Cisco. Мы никак не могли договориться, включать ли в презентацию приведенную выше таблицу со всеми данными. Эта идея не казалась Хизер хорошей. Она полагала, что таблицы перегружены цифрами и это может раздражать столь занятых людей. Я настаивал на включении всех данных, так как каждая цифра означала реальные деньги. Цифры позволяли нам не просто рассказать, как обстоят дела, но и продемонстрировать высочайший уровень нашего метода детализации, который даст нам возможность объяснить Джеймсу, где он зарабатывает или теряет деньги. В конце концов Хизер приказала мне убрать таблицу, но я решил ее показать, и именно она понравилась Джеймсу больше всего. Чуть позже мы еще поговорим о визуализации данных, но пока запомните: вам не следует стесняться показывать цифры, если они помогают приходить к интересным и нужным выводам.
Презентация, сделанная для Джеймса, дала нам необходимый уровень известности и уверенности в себе. Теперь всем стало ясно, что аналитики могут раскопать данные, способные изменить стратегическое направление маркетинга компании. Cisco всецело приняла наши рекомендации. Компания отказалась от идеи искать потенциальных клиентов и сконцентрировала свои силы на создании программ, призванных увеличивать доход от реальных покупателей.
Мы с Майком не остановились на «Ценностном спектре». Следующие шесть месяцев мы провели вместе, выстраивая модели для каждого продукта из портфеля Cisco. Наши модели рассчитывали вероятность покупки определенного продукта существующим или потенциальным клиентом в течение следующих двенадцати месяцев. Это позволяло понять, какой продукт скорее всего окажется интересным для каждой отдельно взятой компании, и, следовательно, распределить усилия команды продавцов правильным образом.
Как мы это сделали? С помощью процесса «моделирования подобных». Предположим, вы обратили внимание, что как только оборот вашего клиента, занимающегося глобальным экспортом, достигает отметки 5 миллионов долларов, он чаще всего покупает систему IP-телефонии (что позволяет значительно снизить расходы на международную связь). Зная это, вы направляетесь ко всем своим клиентам, занимающимся глобальным экспортом и достигшим аналогичного оборота, и начинаете (как это сделала Cisco) предлагать им аналогичные телефонные системы. Благодаря нашей модели количество откликов на электронные рассылки Cisco (призванные заинтересовать потенциальных покупателей) выросло в два раза – а основная цель этой рассылки как раз и заключалась в создании такого списка. Компания была счастлива.