Избранное | страница 79




Глава II

В которой с помощью авторитетных высказываний доказывается, что всякая наука требует [знания] математики на основании авторитетных высказываний я обосновываю [основное положение] так. Боэций во втором прологе к Арифметике утверждает, что «если исследователь незнаком с четырьмя частями математики, то он вряд ли сможет обнаружить истину»[195]. И также: «Без сего усмотрения истины никто не может мыслить здраво». И еще он говорит: «Того, кто отвергает эти пути мудрости, уведомляю: он философствует неверно». И также: «Ясно, что всякий, кто это пропустит, лишится тем самым знания всякой мудрости». Что подтверждает также мнение всех достойных доверия мужей, полагавших, что «среди всех мужей, обладавших авторитетом в древности, которые, ведомые Пифагором, были крепки более ясным [нежели у прочих] умом, считалось очевидным, что никто не достиг полного совершенства в философских дисциплинах, если он не исследовал благородство этой науки в [дисциплинах] квадривия». А в отношении частных моментов это доказывается высказываниями Птолемея и самого Боэция.


Поскольку имеются три сущностных вида философии, как говорит Аристотель в VI книге Метафизики [а именно] математический, естественнонаучный и Божественный, то математика имеет немалое значение для постижения двух прочих видов наук, как учит Птолемей в первой главе Альмагеста и что он там же доказывает. А хотя науки о Божественном бывают двух видов, что очевидно из книги Метафизики, а именно, первая философия, которая доказывает существование Бога, и исследуют Его возвышенные свойства, а также гражданская наука, которая устанавливает божественный культ и поясняет многое, его касающееся, — насколько это возможно для человека, для обеих этих наук, как утверждает и доказывает Птолемей, математика имеет огромное значение. Поэтому Боэций утверждает в конце Арифметики, что в вещах, относящихся к государственному устройству, обнаруживаются математические средние. Ибо он говорит, что «арифметическое среднее подобно государству, управляемому малым числом людей, потому что в меньших его терминах имеется большая пропорциональность, гармоническое среднее подобно государству оптиматов, потому что в больших его терминах имеется большая пропорциональность, а геометрическое среднее есть некоторым образом государство равных, поскольку и в больших, и в меньших его [терминах] имеется совершенно равная пропорциональность»[196]. … И о том, что без математики не может осуществляться управление государством, учит Аристотель и его комментаторы в трактатах по этике. Что же касается математических средних, то это будет разъяснено, когда они будут прилагаться к Божественным истинам. Поскольку же все сущностные виды философии (их составляют более сорока отличающихся друг от друга наук), сводятся к тем [вышеуказанным] трем, то ныне [я полагаю] достаточно убедительно показана, — посредством вышеприведенных авторитетных высказываний, — значимость математики по отношению к сущностным видам философии.